156. On the Summability Methods of Logarithmic Type

By Kazuo Ishiguro
Department of Mathematics, Hokkaido University, Sapporo
(Comm. by K. Kunugi, m.J.A., Dec. 12, 1962)

§1. When a sequence $\left\{s_{n}\right\}$ is given we define the method l as follows: If

$$
\begin{align*}
& t_{0}=s_{0}, t_{1}=s_{1}, \tag{1}\\
& t_{n}=\frac{1}{\log n}\left(s_{0}+\frac{s_{1}}{2}+\cdots+\frac{s_{n}}{n+1}\right) \quad(n \geq 2)
\end{align*}
$$

tend to a finite limit s as $n \rightarrow \infty$, we say that $\left\{s_{n}\right\}$ is summable (l) to s and write $\lim s_{n}=s(l)$. (See [3], p. 59, p. 87.)

On the other hand we define the method L as follows: If

$$
\begin{equation*}
\frac{-1}{\log (1-x)} \sum_{n=0}^{\infty} \frac{s_{n}}{n+1} x^{n+1} \tag{2}
\end{equation*}
$$

tends to a finite limit s as $x \rightarrow 1$ in the open interval $(0,1)$, we say that $\left\{s_{n}\right\}$ is summable (L) to s and write $\lim s_{n}=s(L)$. (See [2].)

Concerning these methods we know the following theorems.
Theorem 1. If $\left\{s_{n}\right\}$ is Cesàro summable $(C, 1)$ to s, then it is summable (l) to the same sum. There is a sequence summable (l) but not summable (C,1). (See [3], p. 59, [5], p. 32.]

Theorem 2. If $\left\{s_{n}\right\}$ is Abel summable (A) to s, then it is summable (L) to the same sum. There is a sequence summable (L) but not summable (A). (See [2], [3], p. 81.)

Here we establish the following theorems.
Theorem 3. If $\left\{s_{n}\right\}$ is summable (l) to s, then it is summable (L) to the same sum.

Theorem 4. If $\left\{s_{n}\right\}$ is summable (l) to s, then

$$
s_{n}=o(n \log n)
$$

Furthermore if we put

$$
s_{n}=a_{0}+a_{1}+\cdots+a_{n} \quad(n \geq 0)
$$

we get

$$
a_{n}=o(n \log n)
$$

from the summability (l) of $\left\{s_{n}\right\}$.
Theorem 5. There is a sequence summable (L) but not summable (l).
§2. Proof of Theorem 3. From (1) we get

$$
\begin{aligned}
& t_{0}=s_{0}, t_{1}=s_{1} \\
& t_{n} \log n=s_{0}+\frac{s_{1}}{2}+\cdots+\frac{s_{n}}{n+1} \quad(n \geq 2)
\end{aligned}
$$

or

$$
\begin{align*}
& t_{2} \log 2=s_{0}+\frac{s_{1}}{2}+\frac{s_{2}}{3} \tag{3}\\
& t_{n} \log n-t_{n-1} \log (n-1)=\frac{s_{n}}{n+1} \quad(n \geq 3)
\end{align*}
$$

Hence

$$
\begin{align*}
& \frac{-1}{\log (1-x)} \sum_{n=0}^{\infty} \frac{s_{n}}{n+1} x^{n+1} \tag{4}\\
& =\frac{-1}{\log (1-x)}\left[s_{0} x+\frac{s_{1}}{2} x^{2}+\frac{s_{2}}{3} x^{3}+\sum_{n=3}^{\infty}\left\{t_{n} \log n-t_{n-1} \log (n-1)\right\} x^{n+1}\right] \\
& =\frac{-1}{\log (1-x)}\left[t_{0} x+\frac{t_{1}}{2} x^{2}+\left(t_{2} \log 2-t_{0}-\frac{t_{1}}{2}\right) x^{3}-\right. \\
& \left.\quad \quad-t_{2} x^{4} \log 2+\sum_{n=3}^{\infty} t_{n}\left(x^{n+1}-x^{n+2}\right) \log n\right]
\end{align*}
$$

since, for $0<x<1$,

$$
\lim _{n \rightarrow \infty} t_{n} x^{n+1} \log n=0
$$

from the assumption of this theorem. From (4) we get

$$
\begin{align*}
& \lim _{x \rightarrow 1-0} \frac{-1}{\log (1-x)} \sum_{n=0}^{\infty} \frac{s_{n}}{n+1} x^{n+1} \tag{5}\\
& \quad=\lim _{x \rightarrow 1-0} \frac{-x(1-x)}{\log (1-x)} \sum_{n=3}^{\infty} t_{n} x^{n} \log n .
\end{align*}
$$

Now we put

$$
\begin{aligned}
& \psi(x)=\sum_{n=3}^{\infty} x^{n} \log n, \\
& \psi_{t}(x)=\sum_{n=3}^{\infty} t_{n} x^{n} \log n, \\
& \varphi(x) \begin{cases}=\frac{-\log (1-x)}{x(1-x)} & \text { for } 0<x<1 \\
=1 & \text { for } x=0\end{cases}
\end{aligned}
$$

It is clear that $\psi(x)$ and $\psi_{t}(x)$ converge for $0 \leq x<1$, since $\lim t_{n}=s$.
Further we have, for $0 \leq x<1$,

$$
\varphi(x)=1+\left(1+\frac{1}{2}\right) x+\left(1+\frac{1}{2}+\frac{1}{3}\right) x^{2}+\cdots .
$$

Here we use the following
Lemma. If $d_{n}>0, \sum_{n=0}^{\infty} d_{n}=\infty, \sum_{n=0}^{\infty} d_{n} x^{n}$ and $\sum_{n=0}^{\infty} c_{n} x^{n}$ are both convergent for $0 \leq x<1$, and if $\lim _{n \rightarrow \infty} \frac{c_{n}}{d_{n}}=\alpha,-\infty \leq \alpha \leq \infty$, then

$$
\lim _{x \rightarrow 1-0} \frac{\sum c_{n} x^{n}}{\sum d_{n} x^{n}}=\alpha
$$

For the proof see [4], pp. 175-177.
In this lemma we put

$$
d_{n}=1+\frac{1}{2}+\cdots+\frac{1}{n+1} \quad(n \geq 0)
$$

and

Since

$$
\begin{aligned}
& c_{0}=c_{1}=c_{2}=0 \\
& c_{n}=t_{n} \log n \quad(n \geq 3)
\end{aligned}
$$

$$
\lim _{n \rightarrow \infty} \frac{\log n}{1+\frac{1}{2}+\cdots+\frac{1}{n+1}}=1
$$

we get

$$
\lim _{x \rightarrow 1-0} \frac{\psi_{t}(x)}{\varphi(x)}=\lim _{n \rightarrow \infty} t_{n}=s
$$

from the assumption of this theorem, whence the proof is complete from (5).

Proof of Theorem 4. From (3) we get

$$
s_{n}=(n+1)\left\{t_{n} \log n-t_{n-1} \log (n-1)\right\} \quad(n \geq 3) .
$$

Hence

$$
\frac{s_{n}}{n \log n}=\frac{(n+1)}{n}\left\{t_{n}-t_{n-1} \frac{\log (n-1)}{\log n}\right\} \quad(n \geq 3),
$$

which tends to 0 as $n \rightarrow \infty$ from the assumption of this theorem.
To prove the second part of this theorem we use the following formula:

$$
\begin{aligned}
a_{n} & =s_{n}-s_{n-1} \\
& =(n+1) t_{n} \log n-(2 n+1) t_{n-1} \log (n-1)+n t_{n-2} \log (n-2) .
\end{aligned}
$$

Thus we can see similarly

$$
\lim \frac{a_{n}}{n \log n}=0
$$

Proof of Theorem 5. We define the series $\sum_{n=0}^{\infty} \alpha_{n}$ and the sequence

$$
s_{n}=a_{0}+a_{1}+a_{2}+\cdots+a_{n} \quad(n \geq 0)
$$

by the following expression

$$
e^{1 /(1+x)}=\sum_{n=0}^{\infty} a_{n} x^{n} .
$$

This example is used to show the existence of the sequence which is summable (A) but not summable (C, r) for any $r, r>-1$. (See [3], Theorem 56.) It is known that a_{n} is not $O\left(n^{r}\right)$ for any r, whence $\left\{s_{n}\right\}$ is not summable (l) from Theorem 4. On the other hand $\left\{s_{n}\right\}$ is summable (L) from Theorem 2.

This completes the proof.

References

[1] D. Borwein: On methods of summability based on power series, Proc. Roy. Soc. Edinburgh. Sect. A, 64, 342-349 (1957).
[2] -: A logarithmic method of summability, Jour. London Math. Soc., 33, 212220 (1958).
[3] G. H. Hardy: Divergent Series, Oxford (1949).
[4] E. W. Hobson: The Theory of Functions of a Real Variable and the Theory of Fourier Series, vol. 2, Cambridge (1926).
[5] O. Szász: Introduction to the Theory of Divergent Series, Cincinnati (1952).

