
42 [Vol. 39,

11. On the Radiation Pressure Exerted on a Non.Stationary
Gaseous Cloud due to a Resonance Line

By Yusuke HAGHARA, M.J.A.
(Comm. Jan. 12, 1963)

1. Introduction. The radiation pressure exerted to a gaseous
cloud by a neighbouring exciting star of high temperature has been
discussed by Ambartsumian (1932, 1933), Zanstra (1934, 1949, 1950,
1951), Gerasimovi (1934), Chandrasekhar (1935, 1945a, 1945b), McCrea
and Mitra (1936), Hagihara (1938, 1943), Hagihara and Hatanaka
(1941, 1942), and others in view of application to problems of planetary
nebulae, Wolf-Rayet stars and Be stars. They all assumed that the
atoms and ions taking part in the radiative processes are at rest.
In the present note the effect of the systematic and the random
motions of the atoms is taken into consid’eration in discussing the
radiation pressure. In such problems the central question is in the
form of the line profiles. Also the question on the non-coherency of
the absorbed and the emitted radiations comes in. The radiation
incident to the cloud is assumed to be of Doppler’s line profile and
the probabilities for the absorption and the emission of radiation are
taken to be of radiation damping form. It is assumed also the
complete non-coherency of the radiation. The question for the radi-
ative transfer is treated in view of application to thick gaseous
clouds by the author’s former method of using Green’s function
(1943). The atoms are supposed to have both systematic and random
thermal motions. Even in the case of a resonance line the integra-
tion becomes complicated and I have to expand according to the
powers of the thermal velocity of the atoms. In such a case of the
resonance line treated in the present note, in which the distributions
of the temperature and the density are supposed to be uniform
throughout the cloud, the absorption of the direct radiation from the
exciting star plays the main part of the radiation pressure. It is in
this limited sense that the present note is dealing with due to the
difficulty of the integration.

2. Line Absorption. Suppose that the atoms of the cloud are
moving with velocity V-v cos 9 in the positive z-direction, where V
is of the systematic motion and v is of the random motion making
an angle 6 with the positive z-direction. Suppose further that the
distribution of the random velocities is such that the number of atoms
in the ground state per unit volume is expressed by
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/ M dD2 ,.e-iTdvN(v)-- 2rkT 4r

where we have for isotropy dt?/4=-lsin dO, and M is the mass
2

of an atom, k the Boltzmann constant and T is the temperature.
Suppose that a radiation of intensity I(,)d, is incident to the atoms
in the positive z-direction and that an atom is excited from the
ground state 1 to the excited state 2 by absorbing a light quantum
h,’ as seen from the moving atom. The absorbed energy per unit
volume per unit time is, as seen from the moving atom,

h,’B (,’)N(v)I(,’)d,’,
where B(,’) is the transition probability for absorption.
Suppose that

a 1B(,’)--B.-
a

and

I() I. 1

where ,0 is the frequency of the line center, A, is the Doppler
width and a is the radiation damping width for absorption. The
frequency ,’ as seen from the moving atom is related to the frequency
, as seen from the reference frame fixed in space by

h’--h(1-- V-kv cos 0).
Hence the energy absorbed per unit volume per unit time in the
frequency range ,’ to ,’+d,’ is

fd4 f M
2kT

v=O

The first term is equal to the amount of the absorbed energy
when the thermal motion is not taken into account. The second
term represents the correction due to the thermal motion of the atoms.
The effect of the thermal motion is in the sense of increasing the
absorbed energy and hence the radiation pressure. The effect of the
systematic motion, when we neglect the effect of the thermal motion,
is expressed by

(; r)Id
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where

Erfc(x) e-t. dt - e-t"dt.
2

This effect is the shift of the line center in the sense of decreasing
the radiation pressure, by more than the amount shown by the factor

(1--V of the first line.
\ c/

3. Line Emission. Consider an atom moving with velocity

V+v cos in the z-direction. Suppose that the probability of emission
for the line as seen from the moving atom is

A4(’)d’-- b 1 d’
r b + (,’-- ,o)

and the number of atoms in the second quantum state per unit volume
is

N.(v) 2 M e-O/:rdv
2rkT

Then the emitted energy in the frequency range , to ,+d, per unit
volume per unit time as seen from the fixed frame is

E(,; r)d, I_ V__
N(v)dv. A.(’)h’d’--NA. bhd c

The first term gives the ordinary emission formula with the shift

the line eenter due to the Doler effect and the factor 1--
for correcting the energy of a light quantum h,. The second term
represents the effect of the thermal motion.

4. Transfer of the Line Radiation. Denote by r the distance
from the center of the exciting star to a point in the cloud and t is
the angle between the radius vector and the direction of the rdiation
and write

(; r)-1__ f(,; r), Q(,; r)-E(,; r).
4r (,; r)

Then the equation of the transfer as seen from the fixed frame
is (Hagihara 1938, Hagihara and Hatanaka 1941)
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cos 9 3I(; r) sin t 3I(,; r) _w(,; r)I(,; r)-kw(,; r)Q(,; r).

Further write

W(’o; r)dr- (,o; r)dr-dt,
4

(,; _A)=

__
(,; )

(,0; r) (
and suppose that t=0 at the inner boundary of the cloud where
r--ro, then we get after the way of Chandrasekhar (Chandrasekhar
1934, Hagihara 1943) with Eddington’s approximation

I ? 1 .(; r)Q(; r)1 d r dJ(,;r) _2(,;r)j(,;r)
r dt dt

where

J(,; r)-fI(,; r) dw.
4=

If we neglect the thermal motion of the atoms, then we have
1\17T

5(.; )- NB.--T() V a

(,; r)- e--/’’

5. Resonance Line. If we suppose that V, T, NI and N. are
one-valued functions of r, then r is a function of the optical depth
t only and hence V, T, N and N are functions of t only. Q(,; r) is
a function of t through V, T and N.: N, and 2(,; r) may be a func-
tion of t through V and (zl,) which is a function of T. Then the
equation of transfer is a Sturm-Liouville’s boundary value problem
(Hagihara 1943) for the differential equation

1 dlr dJ(; r)l_.(; r)J(; r) 31--(; r)Q(; r).
r dt dt

Denote the value of t for the outer boundary of the cloud by t
and the inner boundary by t-0. By the relation in Eddington’s
approximation we can express the boundary conditions at the outer
boundary by
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dJ(,; r)-J(; r)+ :0 at

and at the inner boundary by
1J(,; r)- -- S(,) at t-0,

where uS(,)d, denotes the intensity of the stellar radiation passing
through a unit area of the inner boundary of the cloud, which is
moving towards the z-direction with velocity V, per unit time in the

frequency range u to +gu. S should be multiplied by 1-- if

S is taken as seen from the fixed frame.
Pu

rdt=dx
and suppose that x=x at t=t and x=0 at t=0, then the differen-
tial equation akes the form

d
dx dx 3

with the boundary conditions

J(,; x)+ r(x) dJ(,; x) =0 at x--x,
2 (,;x) dx

and
1J(,; 0)- S(,) at x-0.

and
a(,; x, )=G(,; $, x),. a(; , +o)- --- G(; , -0)- r()

Then the solution of the boundary value problem is
1 2(,; x) f*(,; x, )Q(,; $)d$.z(,; x)-

The radiation pressure K is given by Eddington’s approximation

K-a a
ro

4
:j j

6. Thin Cloud. If the cloud is sufficiently thin, then we can
assume that r is constant, throughout the cloud and also that T, N
and N are constant, and hence that (,; r) is constant throughout
the cloud. The solution of the differential equation

Consider the Green function G(r; x, ) satisfying these boundary
conditions and the relation (Hagihara 1943)

x)G(; )X
dx L dx
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1 d(cdJ) 1
r-- dr 3

is
1J--Ae +Be- + Q

with integration-constants A and B, which should be determined by
the boundary conditions. We get

S---6-Q e- +Q

5ea_e-a
and

b

The radiation pressure is

K= --43c"0fl
1I() ca -l’()Q()tld"A(e 1) B(e-(’)a- 1)+

Assume that t is small, then we obtain

4

3 NAb a(,)
2v
c (,) (a +x)

e-’/(’dx+....

The second term in the bracket represents the effect of the emission
by the atoms in the cloud. The third term in the bracket shows

the effeet of he systematic motion, besides the factor 1--
the incident radiation S(u), which has been supposed to reresent
the ineiden flux er unit area er unit time to the inner boundary
of the cloud with respect to the moing cloud. he term expresses
the loss in radiation ressure due to he shift of the line center.
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