6. On the Images of Connected Pieces of Covering Surfaces. I

By Zenjiro KURAMOCHI

Mathematical Institute, Hokkaido University (Comm. by Kinjirô KUNUGI, M.J.A., Jan. 12, 1963)

Let w=f(z) be an analytic function in |z|<1. It is interesting to consider the distribution of zero-points of f(z)-a=0. Suppose f(z)is of bounded type. Let $\{a_i\}$ be the set of *a*-points of f(z). Then it is well known that $\sum_i G(z, a_i) < \infty$, where $G(z, a_i)$ is the Green's function of |z|<1. In the present paper we consider the distribution of the set $f^{-1}(C(\rho, w_0))$ in |z|<1, where $C(\rho, w_0)=E[w:|w-w_0|<\rho]$.

Let R be a Riemann surface with positive boundary and let $R_n(n=0, 1, 2, \cdots)$ be its exhaustion with compact relative boundary ∂R_n . Let $G \subseteq G'$ be domains¹⁾ in R, where G and G' may consist of at most enumerably infinite number of components. Let $w_n(z)$ be the least positive superharmonic function in G' such that $w_n(z) \ge 1$ on $G \cap (R-R_n)$. Put $w(B \cap G, z, G') = \lim_n w_n(z)$ and call it²⁾ H.M. of $(G \cap B)$. If there exists a number n_0 such that $D(\omega_n(z)) < M < \infty$ for $n \ge n_0$, where $\omega_n(z)$ is a harmonic function in G' such that $\omega_n(z)=1$ on $G \cap R-R_n$, =0 on $\partial G'$ and has M.D.I. (minimal Dirichlet integral), $\omega_n(z) \rightarrow^{2^\circ}$ in mean to $\omega(G \cap B, z, G')$ called C.P. of $(G \cap B)$. In case G'=R, we write $w(G \cap B, z)$ and if $G'=R-R_0$, we write $\omega(G \cap B, z)$ simply. Put $S(G, r)=E[z \in G: |z|=r]$.

Let G be a domain (of one component) in |z| < 1. If there exists no bounded harmonic function in G vanishing on ∂G , i.e. $w(G \cap B, z, G) = 0$, we say that G is almost compact. Let $C(\rho, w_0)$ be a circle in the w-plane. Then $f^{-1}(C(\rho, w_0))$ is composed of at most enumerably infinite number of components (connected pieces) g_1, g_2, \cdots . If a domain G is a subset of $\{g_i\}$, we call G a D.G. (domain generated) of $f^{-1}(C(\rho, w_0))$. At first we shall prove by simple method the following

Theorem 1. Let w=f(z) be an analytic function in |z|<1 such that $|f(z)| \leq M$.

a) Let G be a D.G. of $f^{-1}(C(\rho, w_0))$ and let G' be a D.G. of $f^{-1}(C(\rho' w_0))$ containing $G: \rho < \rho'$. Then $w(G \cap B, z) > 0$ if and only if there exists at least one component g' of G' such that $w(G \cap B, z, g') > 0$ for any $\rho' > \rho$.

¹⁾ In the present paper we suppose the relative boundary of a domain consists of analytic curves clustering nowhere in R.

²⁾ Z. Kuramochi: Potentials on Riemann surfaces: Journ. Sci. Hokkaido Univ. 14 (1962).

Z. KURAMOCHI

b) Let G be a domain in |z| < 1. If $\overline{\lim_{r \to 1}} \operatorname{mes} (S(G, r)) > 0$, then $w(G \cap B, z) > 0$.

c) Let G be a D.G. of $f^{-1}(C(\rho, w_0))$ such that every component of G is almost compact. Put $G''=G\cap f^{-1}(C(\rho'', w_0)): \rho'' < \rho$. Then $\lim_{\to \to \infty} \max (S(G'', r))=0$ for any $\rho'' < \rho$.

Proof. a) Put R = E[z; |z| < 1] and R = E[w; |w| < M]. Let $_{cc'}w(G \cap B, z)$ be the least positive superharmonic function in R larger than $w(G \cap B, z)$ in CG'. Then $_{CG'}w(G \cap B, z) = _{CG'}w(G \cap B, z)$ in g' for any component g' of G'. Let $w(C(\rho, w_0), w)$ be H.M. of $C(\rho, w_0)$ (the least positive superharmonic function in $R, \geq 1$ on $C(\rho, w_0)$). Then since R is of positive boundary, $w(C(\rho, w_0), w) \neq 1$ and by the maximum principle $w(C(\rho, w_0), w) \leq N < 1$ on $\partial C(\rho', w_0)$ and $\leq N$ in $R - C(\rho', w_0)$. Since $w(C(\rho, w_0), w)$ can be considered in $R, w(G \cap B, z) \leq w(C(\rho, w_0), w)$ $\leq N$ in $R-f^{-1}(C(\rho', w_0))$. It is known that $w(G \cap B, z)$ is the least positive harmonic function in any domain D among the functions with the same value as $w(G \cap B, z)$ on ∂D such that $D \cap G = 0$. Let g'_i be a component of G' and let \hat{g}'_j be a component of $f^{-1}(C(\rho', w)) - G'$. Then since $0 = (\hat{g}'_j \cap G') \supset (\hat{g}'_j \cap G)$ and since $w(G \cap B, z) \leq w(C(\rho, w_0), w) \leq N$ on $\partial f^{-1}(C(\rho', w_0)), w(G \cap B, z) \leq N \text{ in } \hat{g}'_{j}. \text{ Next } \sup_{z \in G'} w(G \cap B, z) \leq \max w(G \cap B, z) \leq \max w(G \cap B, z) \leq \max w(G \cap B, z) \leq N \text{ in } R - G' \text{ and } _{CG'} w(G \cap B, z) \leq N \text{ in } G'. \text{ Thus } _{CG'} w(G \cap B, z) \leq w(G \cap B, z) \leq N \text{ in } G'.$ $\leq N$ in R. By $w(G \cap B, z) > 0$ we have $\sup w(G \cap B, z) = 1^{3}$ and $w(G \cap B, z) - c_{G'}w(G \cap B, z) > 0$. Hence there exists at least one point z_0 such that $w(G \cap B, z_0) - _{CG'} w(G \cap B, z_0) > 0$. Clearly $w(G \cap B, z)$ $=_{CG'} w(G \cap B, z)$ outside of G'. Hence such $z_0 \in G'$. Let g' be the component of G' containing z_0 . Then $w(G \cap B, z) - {}_{co'}w(G \cap B, z) > 0$. On the other hand, we have $w(G \cap B, z) - {}_{Cg'}w(G \cap B, z) = w(G \cap B, z, g') > 0.4$ Next suppose $w(G \cap B, z, g') > 0$. Then by $g' \subset R$ and by the maximum principle $w(G \cap B, z) > 0$. Thus we have a).

b) Let w(r, z) be the least positive superharmonic function in R and ≥ 1 in $E[z \in G: |z| > r]$. Let w'(r, z) be the least positive harmonic function in $|z| \leq r$ and ≥ 1 on $E[z \in G: |z| = r]$. Then $w(r, z) \geq w'(r, z)$. Now $w'(r, z) = \frac{\operatorname{mes} S(G, r)}{2 \pi r}$ at z=0. Since $w(B \cap G, z)$ $= \lim_{r \to 1} w(r, z) \geq \overline{\lim_{r \to 1} w(r, z)} > 0$ at z=0, we have $w(G \cap B, z) > 0$. c) Assume there exists a number $\rho'' > \rho$ such that $\overline{\lim_{r \to 1} \operatorname{mes} p(r, z)}$

c) Assume there exists a number $\rho'' > \rho$ such that $\lim_{r \to 1} \max S(G'', r) > 0$: G'' is a D.G. of $f^{-1}(C(\rho'', w_0))$. Then by b) $w(G'' \cap B, z) > 0$. Next by a) there exists at least one component g of G such that $w(G'' \cap B, z, g) > 0$. On the other hand, such g is almost compact

³⁾ See Theorem 2 of 2).

⁴⁾ See p. 21 of 2).

No. 1] On the Images of Connected Pieces of Covering Surfaces. I

and $w(G \cap B, z, g)$ must reduce to zero. This is a contradiction, whence we have c).

Theorem 2. Let w=f(z) be an analytic function in |z|<1 such that the spherical area of R: E[z:|z|<1] by f(z) is finite. Let G be a D.G. of $f^{-1}(C(\rho, w_0))$ and let G' be a D.G. of $f^{-1}(C(\rho', w_0)): \rho' > \rho$ containing G. Then

a) $\omega(G \cap B, z, R-R_0) > 0$ if and only if there exists at least one component g' of G', a D.G. of $f^{-1}(C(\rho', w_0))$ such that $\omega(G \cap B, z, g') > 0$ for any $\rho' > \rho$.

b) Let G be a domain in R (not necessarily of one component). If $\overline{\lim} \log \operatorname{Cap} S(G, r)$: logarithmic capacity: >0, $\omega(G \cap B, z) > 0$.

c) Let G be a D.G. of $f^{-1}(C(\rho, w_0))$ such that every component of G is almost compact. Put $G''=G\cap f^{-1}(C(\rho'', w_0)): \rho'' < \rho$. Then $\lim_{\to \infty} \log Cap S(G'', r)=0$ for any $\rho'' < \rho$.

Let $R_n(n=0, 1, \dots)$ be an exhaustion of R with compact relative boundary ∂R_n such that $R_1 \supset R_0$ and dist $(\partial R_1, R_0) > 0$. Let $\omega_n(z)$ be a harmonic function in $R - ((R - R_n) \cap G) - R_0$ such that $\omega_n(z) = 1$ on $(R-R_n)\cap G$, =0 on ∂R_0 and has M.D.I. ($\leq M$), because dist ($\partial R_1, R_0$) >0 for $n \ge 1$. Then $\omega_n(z) \rightarrow \omega(G \cap B, z, R - R_0) = \omega(G \cap B, z)$ in mean and also $D(\omega(G \cap B, z)) \leq M$. Let U(w) be a continuous function in <u>R</u>=whole w-sphere such that U(w)=1 on $C(\rho, w_0)$, harmonic in $C(\rho', w_0)$ $-C(\rho, w_0) \text{ and } = 0 \text{ in } \underline{R} - C(\rho', w_0).$ Then $\left| \frac{\partial U(w)}{\partial u} \right| \leq N, \left| \frac{\partial U(w)}{\partial v} \right| \leq N: w$ =u+iv. Put $U(z)=U(f^{-1}(w))$. Then U(z)=1 in G and =0 on $\partial G'$ and $D(U(z)) \leq N^2 \times \text{area of } G'$. Put $U'_n(z) = \min(U(z), \omega_n(z))$. Then $U'_n(z)$ =1 on $G \cap (R-R_n) = 0$ on $\partial G' + \partial R_0$ and $D(U'_n(z)) \leq D(\omega_n(z)) + D(U(z))$ $\leq K < \infty$ for $n \geq 1$. On the other hand, by the Dirichlet principle $D(U'_n(z)) \ge D(\omega'_n(z))$, where $\omega'_n(z)$ is a harmonic function in $(G' \cap (R-R_0))$ $-(G \cap (R-R_n))$ such that $\omega'_n(z)=1$ on $G \cap (R-R_n)$, =0 on $\partial G' + \partial R_0$ and has M.D.I. Also by $(G' \cap (R-R_0)) \subset (R-R_0)$ we have $D(\omega_n(z)) \leq C(R-R_0)$ $D(\omega'_n(z))$. Hence by $D(\omega(G \cap B, z)) > 0$ and by the fact that $\omega'_n(z) \rightarrow D(\omega(G \cap B, z)) > 0$ $\omega(G \cap B, z, G' \cap (R-R_0))$ in mean we have $D(\omega(G \cap B, z, G' \cap (R-R_0)))$ >0. Next by $((R-R_0)\cap G') \subset G'$ we have by the maximum^{*} principle⁴ $\omega(G \cap B, z, G') \ge \omega(G \cap B, z, G' \cap (R-R_0)) > 0$. Let $g'_i(i=1, 2, \cdots)$ be a component of G'. Then by $D_{G'}(\omega(G \cap B, z, G')) > 0$, there exists at least one component g' of G' such that $D(\omega(G \cap B, z, G')) > 0.$ Clearly in any component $g' \omega(G \cap B, z, G') \equiv \omega(G \cap B, z, g')$. Hence there exists a component g' of G' such that $\omega(G \cap B, z, g') > 0$. Next suppose $\omega(G \cap B, z, g') > 0$. $\cap B, z, g') > 0$. Then as above $0 < D(\omega(G \cap B, z, g')) \le D(\omega(G \cap B, z, g'))$ $(R-R_0))$ and by $((R-R_0)\cap g')\subset (R-R_0)$ we have $\omega(G\cap B, z)>0$.

b) Suppose $\overline{\lim_{r\to 1}} \log \operatorname{Cap} (S(G, r)) > 0$. Then there exist a const.

 $\delta > 0$ and a sequence r_1, r_2, \dots : $\lim_n r_n = 1$ such that log. $\operatorname{Cap}(S(G, r_n)) > \delta$. Hence there exists a const. δ' such that $D(H(S(G, r_n), z)) \ge \delta' > 0$, where H(A, z) is a harmonic function in the whole z-plane $-D_0$ such that H(A, z)=1 on A, =0 on ∂D_0 and has M.D.I. $<\infty$, where D_0 is a disc such that $D_0 \subset R_0$. Let $D_0^{r_n}$ be the mirror image of D_0 with respect to $|z| = r_n$. Then by the Dirichlet principle $D(\tilde{H}(S(G, r_n), z)) \ge \delta'$, where $\tilde{H}(A, z)$ is a harmonic function in the whole z-plane $-D_0 - D_0^{r_n}$ such that $\tilde{H}(A, z)=1$ on $E[z: z \in A, |z| = r_n], =0$ on $\partial D_0 + \partial D_0^{r_n}$ and has M.D.I. Cleary $\tilde{H}(A, z)$ is symmetric with respect to $|z| = r_n$ and $\tilde{H}(A, z)$ has M.D.I. over $R'_n - D_0$: $R'_n = E[z: |z| < r_n]$. Hence $D_{K-R_0}(\omega(T(G, r_n), z)) \ge D_{K'_n - E_0}(\tilde{H}(S(G, r_n), z) \ge \frac{\delta_1}{2},$ where $\omega(A, z)$ is a harmonic function in $R - R_0$ and $T(G, r) = E[z \in G: |z| > r]$, where R = E[z: |z| < 1]. Now $\omega(T(G, r)z) \to \omega(G \cap B, z)$ in mean, as $r \to 1$.

c) Assume there exists a number $\rho'' < \rho$ such that $\overline{\lim_{r \to 1}} \log$. Cap. S(G'', r) > 0. Then by b) $\omega(G'' \cap B, z) > 0$ and by $G'' \subset G$ (by a)), there exists at least one component g of G such that $\omega(G'' \cap B, z, g) > 0$. On the other hand, since g is almost compact, such function must be zero. Hence we have c) as c) of Theorem 1.

Let f(z) be an analytic function in R = E[z; |z| < 1]. If f(z) has angular limits a.e. on $\Gamma = E[z; |z| = 1]$, we say that f(z) is of F-type. Clearly if f(z) is of bounded type, f(z) is of F-type.

Theorem 3. Let f(z) be of F-type. Let F_{ρ} be the set on $\Gamma = E[z:|z|=1]$ such that f(z) has angular limits in $C(\rho, w_0)$. Then F_{ρ} is linearly measurable. Let $J(F_{\rho}, z)$ be the harmonic measure of F_{ρ} in R = E[|z|<1]. Then

a') $J(F_{\rho''}, z) \leq w(\widetilde{G}_{\rho} \cap B, z) \leq J(F_{\rho'}, z), \text{ where } \widetilde{G}_{\rho} = f^{-1}(C(\rho, w_0)) \text{ for } \rho'' < \rho < \rho'.$

a) Let G be a D.G. of $f^{-1}(C(\rho, w_0))$ and let G' be a D.G. of $f^{-1}(C(\rho', w_0))$ containing G. Then $w(G \cap B, z) > 0$ if and only if there exists at least one component g' of G' such that $w(G \cap B, z, g') > 0$ for any $\rho' > \rho$.

b) Let G be a domain in R. If $\overline{\lim_{r\to 1}} \operatorname{mes}(S(G,r)) > 0$, $w(G \cap B, z) > 0$.

c) Let G be a D.G. of $f^{-1}(C(\rho, w_0))$ such that every component of G is almost compact. Put $G''=G \cap f^{-1}(C(\rho'', w_0)): \rho'' > \rho$. Then $\overline{\lim} \operatorname{mes} (S(G'', r))=0$ for any $\rho'' < \rho$.

d) Suppose the spherical image of R: |z| < 1 is finite. Let G be a D.G. of $f^{-1}(C(\rho, w_0))$ and G' be a D.G. of $f^{-1}(C(\rho', w_0))$ such that

No. 1] On the Images of Connected Pieces of Covering Surfaces. I

$G' \supset G$. Then if $\overline{\lim_{r \to 1}} \log \operatorname{Cap} (S(G, r)) > 0$, $\lim_{r \to 1} \max (S(G', r)) > 0$ for $\rho' > \rho$.

Proof. a') Let $\rho'' < \rho$. Assume mes $F_{\rho''} > 0$. Then for any $\varepsilon > 0$ there exists a closed set E in $F_{\rho''}$ such that mes $(F_{\rho''} - E) < \varepsilon$ and f(z) converges uniformly on E. Hence for any $\rho^*: \rho'' < \rho^* < \rho$ we can find a set E' in E and $\delta < 1$ such that mes $(F_{\rho''} - E') < 2\varepsilon$ and f(z) in $C(\rho^*, w)$ for z in $D = E_{e^{i\theta}E'} \left[z: 1 > |z| > \delta, \left| \arg \frac{z - e^{i\theta}}{e^{i\theta}} \right| < \frac{\pi}{4} \right]$, i.e. $\tilde{G}_{\rho} \supset D$.

Now D consists of a finite number of simply connected domains \mathfrak{D}_i . Suppose mes $(\partial \mathfrak{D}_i \cap \Gamma) > 0$. Then $w_n(z) \ge U(z)$, where U(z) is a harmonic function in \mathfrak{D}_i such that U(z) = 0 on $\partial \mathfrak{D}_i - \Gamma$ and = 1 on $\partial \mathfrak{D}_i \cap \Gamma$ and $w_n(z) \ge 1$ in $\tilde{G}_{\rho} \cap (R - R_n)$, whence $w(\tilde{G}_{\rho} \cap B, z) \ge U(z)$. Now $\partial \mathfrak{D}_i$ is rectifiable. Map \mathfrak{D}_i onto $|\xi| < 1$. Then E' is mapped onto a set of positive measure on which U(z) = 1 almost everywhere. Whence U(z) = 1 a.e. on E' and $u(z) \le w(\tilde{G}_{\rho} \cap B, z)$. Let $\varepsilon \to 0$. Then $w(\tilde{G}_{\rho} \cap B, z)$ = 1, a.e. on F_{ρ^*} and $w(G_{\rho} \cap B, z) \ge J(F_{\rho^*}, z) \ge J(F_{\rho^*}, z)$. If mes $F_{\rho^*} = 0$, clearly $w(\tilde{G}_{\rho} \cap B, z) \ge 0 = J(F_{\rho^*}, z)$. Next let $\rho' > \rho$ and CF_{ρ^*} be the set on which f(z) has angular limits not contained in $C(\rho^*, w_0)$: $\rho < \rho^* < \rho'$. Then $\tilde{G}_{\rho^*} = f^{-1}(C(\rho^*, w_0))$ does not tend to $CF_{\rho'}$ and it can be proved that $w(G \cap B, z) = 0$ a.e. on $CF_{\rho'}$ as above. Hence $w(\tilde{G}_{\rho} \cap B, z) \le w(\tilde{G}_{\rho^*} \cap B, z) \le J(F_{\rho^*}, z)$.

a) Suppose $w(G \cap B, z) > 0$. Then by a') $w(G \cap B, z) \leq w(\tilde{G}_{\rho} \cap B, z) \leq J(F_{\rho^*}, z)$, where $\rho < \rho^* < \rho'$. Hence $E \subset F_{\rho^*}$ and mes E > 0, where E is the set on Γ on which $w(G \cap B, z) > 0$. Then we can find a closed set E' of positive measure in E and a domain $D = E_{e^{t\theta} \in E'} \Big[1 > |z| > \delta$, $\Big| \arg \frac{z - e^{i\theta}}{e^{i\theta}} \Big| < \frac{\pi}{4} \Big]$ such that f(z) in $C(\rho', w_0)$ for $z \in D$. Then $\partial G_{\rho'}(\supset \partial G')$ does not tend to D, whence (Case 1) any component \mathfrak{D} of D is contained in a component g' of G' or (Case 2) \mathfrak{D} is disjoint from any component g' of G'. Case 1: Since $_{CG'}w(G \cap B, z) = w(G \cap B, z)$ on $\partial \mathfrak{D} - \Gamma, _{CG'}w(G \cap B, z) = 0$ a.e. on $\partial \mathfrak{D} \cap \Gamma$ Case 2: $0 =_{CG'}w(G \cap B, z) = 0$ a.e. on $\partial \mathfrak{D} \cap \Gamma$. Hence $_{CG'}w(G \cap B, z) = 0$ a.e. on $\partial \mathfrak{D} \cap \Gamma$. Hence $0 < w(G \cap B, z) = -_{CG'}w(G \cap B, z)$. Thus there exists at least one component g' of G' such that $w(G \cap B, z) > 0$.

b) and c) can be proved as Theorem 1.

d) Suppose $w(G \cap B, z) > 0$. Then by a) $w(G \cap B, z) \leq J(F_{\rho^*}, z)$: $\rho < \rho^* < \rho'$. Hence the set E on Γ on which $w(G \cap B, z) > 0$ is contained in F_{ρ^*} and mes E > 0. Hence as b) we can find a set E' of positive Z. KURAMOCHI

measure in E and a domain $D_{e^{i\theta} \in E'} = E\left[1 > |z| > \delta$, $\left|\arg \frac{z - e^{i\theta}}{e^{i\theta}}\right| < \frac{\pi}{4}\right]$ such that $f(z) \in C(\rho^{**}, w_0)$: $\rho^* < \rho^{**} < \rho'$ for $z \in D$. Whence any component \mathfrak{D} of D is contained in a component g' of G' or disjoint from G'. If $\mathfrak{D} \cap G' = 0$, $w(G \cap B, z) \leq w(G' \cap B, z) = 0$ a.e. on $\partial \mathfrak{D} \cap \Gamma$. Hence there exists at least one \mathfrak{D} such that $\mathfrak{D} \subset g'$ of G' and mes $(\partial \mathfrak{D} \cap \Gamma) > \delta > 0$, whence $\delta < \lim_{r \to 1} S(g', r) \leq \lim_{r \to 1} S(G' r)$. Next suppose $\lim_{r \to 1} \log$. Cap S(G, r) > 0. Then by Theorem 2 there exists at least one component g' of G' such that $0 < w(G \cap B, z, g') \leq w(G \cap B, z)$. Hence we have by $\lim_{r \to 1} \log$. Cap (S(G, r)) > 0 $\lim_{r \to 1} S(G', r) > 0$.