3. On the Existence and the Propagation of Regularity of the Solutions for Partial Differential Equations. I

By Hitoshi Kumano-go
Department of Mathematics, Osaka University
(Comm. by Kinjirô Kunugi, m.J.A., Jan. 12, 1963)

1. Introduction. The object of this note is to derive a priori inequality based on our recent note [4], which is applicable to the existence theorem and the propagation of regularity of the solutions for partial differential equations.

Recently L. Hörmander [2] has already derived a similar inequality under some conditions for the principal part of given operators.

We shall consider differential operator L in a neighborhood of the origin in ($\nu+1$)-space: $(t, x)=\left(t, x_{1}, \cdots, x_{\nu}\right)$. Let $(m, \mathfrak{m})=\left(m, m_{1}, \cdots\right.$, $\left.m_{\nu}\right)\left(m_{j} \leqq m ; j=1, \cdots, \nu\right)$ be an appropriate real vector whose elements are positive integers. The operator considered in this note is of the form

$$
\begin{equation*}
L=L_{0}+\sum_{i+m|\alpha: \mathrm{m}| \leq m-1} b_{i, \alpha}(t, x) \frac{\partial^{i+|\alpha|}}{\partial t^{i} \partial x^{\alpha}} \tag{1.1}
\end{equation*}
$$

with

$$
\begin{gather*}
L_{0}=\sum_{i+m|\alpha: \mathfrak{m}|=m} a_{i, \alpha}(t, x) \frac{\partial^{i+|\alpha|}}{\partial t^{i} \partial x^{\alpha}}\left(a_{m, 0}(t, x)=1\right) \tag{1.2}\\
\left(\alpha=\left(\alpha_{1}, \cdots, \alpha_{\nu}\right), x^{\alpha}=x_{1}^{\alpha_{1}} \cdots x_{\nu}^{\alpha_{\nu}},|\alpha|=\alpha_{1}+\cdots+\alpha_{\nu},\right. \\
\left.|\alpha: m|=\alpha_{1} / m_{1}+\cdots+\alpha_{\nu} / m_{\nu}\right)
\end{gather*}
$$

where $b_{i, \alpha}$ are in L^{∞} and $a_{i, \alpha}$ in $C_{(t, x) .}^{\infty}{ }^{1)}$
Setting for (1.2) and real vectors $\xi=\left(\xi_{1}, \cdots, \xi_{\nu}\right)$

$$
\begin{equation*}
L_{0}(t, x, \lambda, \xi)=\sum_{i+m|\alpha: \mathfrak{m}|=m} a_{i, \alpha}(t, x) \lambda^{i} \xi^{\alpha} \tag{1.3}
\end{equation*}
$$

which we call the characteristic polynomial of L, we derive a priori inequality (3.3) under some conditions for the characteristic roots $\lambda=\lambda(\xi)$ of the equation $L_{0}(t, x, \lambda, \sqrt{-1} \xi)=0$ for $\xi \neq 0$.

The author would like to express his gratitude to Prof. M. Nagumo, Messrs. M. Yamamoto and A. Tsutsumi for their helpful discussions.
2. Definitions and lemmas. Let us define $r=r(\xi)$ for real vector ξ as a positive root of the equation

$$
\begin{equation*}
F(r, \xi) \equiv \sum_{j=1}^{\nu} \xi_{j}^{2} r^{-2 / m_{j}}=1 \quad(\xi \neq 0) . \tag{2.1}
\end{equation*}
$$

Then, r is in $C_{(\xi \neq 0)}^{\infty}$ and satisfies inequalities

[^0]\[

$$
\begin{align*}
& \nu^{-1 / 2} K(\xi)^{m} \leqq r(\xi) \leqq \nu^{m / 2} K(\xi)^{m}, \\
& \left|\frac{\partial^{|\alpha|}}{\partial \xi^{\alpha}} r(\xi)\right| \leqq C_{\alpha}^{2)} K(\xi)^{m(1-|\alpha: m|)} \tag{2.2}
\end{align*}
$$
\]

where $K(\xi)$ is defined by $K(\xi)=\left\{\sum_{j=1}^{\nu} \xi_{j}^{2 m_{j}}\right\}^{1 / 2 m}$.
The proof is not so difficult; see [4].
Definition 1. We call H a singular integral operator of class $C_{\mathfrak{m}}^{m}$ with the symbol $\sigma(H)(x, \xi)=\sum_{r=1}^{\infty} a_{r}(x) \widehat{h}_{r}(\xi)\left(a_{r}(x) \in C_{(x)}^{\infty}, \hat{h}_{r}(\xi) \in C_{(\xi \neq 0)}^{\infty} ;\right.$ $r=1,2, \cdots$) if the following conditions are satisfied:

$$
\begin{align*}
& \left|\frac{\partial^{|\alpha|}}{\partial x^{\alpha}} a_{r}(x)\right| \leqq A_{l, \alpha} r^{-l} \text { for every } l \text { and } \alpha, \\
& \left|\frac{\partial^{|\alpha|} \mid}{\partial \xi^{\alpha}} \widehat{h}_{r}(\xi)\right| \leqq B_{\alpha} r^{l} l_{\alpha} K(\xi)^{-m \mid \alpha: \mathfrak{n | |}} \text { for every } \alpha . \tag{2.3}
\end{align*}
$$

Then, $H u$ is defined by

$$
H u=\frac{1}{\sqrt{2 \pi^{\nu}}} \int \mathrm{e}^{\sqrt{-1} x \cdot \hat{\xi}} \sigma(H)(x, \xi) \widehat{u}(\xi) d \xi \cdot \cdot^{3)}
$$

Definition 2. We define a convolution operator Λ by
$\widehat{\mu u}(\xi)=\widehat{\Lambda}(\xi) \widehat{u}(\xi)$ where $\widehat{\Lambda}(\xi)\left(\epsilon C_{(\xi \neq 0)}^{\infty}\right)$ satisfies

$$
\left|\frac{\partial^{|\alpha|}}{\partial \xi^{\alpha}} \widehat{\Lambda}(\xi)\right| \leqq \gamma_{\alpha} K(\xi)^{1-m|\alpha: \mathfrak{m}|}
$$

Remark. i) If $\lambda_{0}(x, \eta)\left(\epsilon C_{(x, \eta)}^{\infty}\left(\eta=\left(\eta_{1}, \cdots, \eta_{\nu}\right) \neq 0\right)\right)$ is homogeneous of order zero in η, then by [1] λ_{0} is expanded such as $\lambda_{0}(x, \eta)$ $=\sum_{r=1}^{\infty} a_{r}(x) \hat{h}_{0, r}(\eta)$ where $a_{r}(x)$ and $\hat{h}_{0, r}(\eta)$ satisfy (2.3) for (m, \mathfrak{m}) $=(1,1, \cdots, 1)$ and $K(\eta)=\left\{\sum_{j=1}^{\nu} \eta_{j}^{2}\right\}^{1 / 2}$. Hence, if we define a matrix R by

$$
R=\left(\begin{array}{cc}
r^{1 / m_{1}} & 0 \tag{2.4}\\
& \ddots \\
0 & \dot{r}^{1 / m_{\nu}}
\end{array}\right)
$$

and set $\widehat{h}_{r}(\xi)=\hat{h}_{0, r}\left(\xi R^{-1}\right)$, we can write $\lambda_{0}\left(x, \xi R^{-1}\right)=\sum_{r=1}^{\infty} a_{r}(x) \widehat{h}_{r}(\xi)$. This shows that $\lambda_{0}\left(x, \xi R^{-1}\right)$ is the symbol of an operator of class C_{m}^{m}. ii) Setting $\hat{\Lambda}=r^{1 / m}$ or $\hat{\Lambda}=K(\xi)^{4)}$ we can define an operator Λ.

Lemma 1. Let $P_{i}(t)$ and $Q_{i}(t)(i=1, \cdots, k)$ be in C_{m}^{m} with real valued symbols defined in (x)-space with t as a parameter.

Suppose each pair $P_{i}(t)$ and $Q_{i}(t)(i=1, \cdots, k)$ satisfies the condition of M. Matsumura [5], that is for some $H_{i}(t) \in C_{\mathrm{m}}^{m}$

[^1]\[

$$
\begin{aligned}
& \frac{\partial}{\partial t} \sigma\left(P_{i}\right)+\sum_{j=1}^{\nu}\left\{\frac{\partial}{\partial x_{j}} \sigma\left(P_{i}\right) \frac{\partial}{\partial \xi_{j}}\left(\sigma\left(Q_{i}\right) \hat{\Lambda}\right)-\frac{\partial}{\partial x_{j}} \sigma\left(Q_{i}\right) \frac{\partial}{\partial \xi_{j}}\left(\sigma\left(P_{i}\right) \hat{\Lambda}\right)\right\} \\
& \quad=\sigma\left(H_{i}\right) \sigma\left(P_{i}\right) \quad(|\xi| \geq 1)
\end{aligned}
$$
\]

and for $H_{i}(t)=P_{i}(t)+\sqrt{-1} Q_{i}(t)(i=1, \cdots, k)$ there exists a constant δ such that $\left|\sigma\left(H_{i}-H_{j}\right)\right| \geqq \delta>0(i \neq j)$.

Then, for the operators $J_{2}=\partial / \partial t+H_{i}(t) \Lambda(i=1, \cdots, k)$ we have

$$
\begin{equation*}
\sum_{i+j=\tau \leq k-1}\left(n h^{-2}\right)^{(k-\tau)} \int \varphi^{-2 n}\left\|\frac{\partial^{i}}{\partial t^{i}} \Lambda^{j} u\right\|^{2} d t \leqq C \int \varphi^{-2 n}\left\|J_{1} \cdots \cdot J_{k} u\right\|^{2} d t \tag{2.5}
\end{equation*}
$$

$$
u \in C_{0}^{\infty}\left(\Xi_{h}\right)
$$

for sufficiently small h and every $n(\geqq 1)$, where $\varphi=(1+t / 2 h)$ and $\Xi_{h}=\{(t, x) ;-h<t<h\}$.

Proof has been given in [4].
Now set $\mathscr{D}_{x^{0}, s}=\left\{x ;\left|x-x^{0}\right|<\varepsilon\right\}$ and $\eta=\varepsilon \nu^{-1 / 2} \eta^{0}$ for latice points η^{0} in R^{ν}. Then there exists a partition of the unity such that

$$
\begin{equation*}
\Theta_{\eta}(x) \in C_{0}^{\infty}\left(\mathfrak{D}_{\eta, \varepsilon}\right), \sum_{\eta} \Theta_{\eta}^{2}(x)=1,\left|\frac{\partial^{|\alpha|}}{\partial x^{\alpha}} \Theta_{\eta}(x)\right| \leqq C_{\varepsilon, \alpha} . \tag{2.6}
\end{equation*}
$$

Lemma 2 (S. Mizohata). Let Λ_{τ} be an operator defined by $\widehat{\Lambda_{\tau} u(\xi)}$ $=\widehat{\Lambda}(\xi) \widehat{u}(\xi)$ where $\hat{\Lambda}_{\tau}(\xi)\left(\epsilon C_{(\xi)}^{\infty}\right)$ satisfies the conditions:

$$
\hat{\Lambda}_{\tau}(\xi)=0 \text { on }\{\xi ;|\xi| \leqq 1\},\left|\frac{\partial^{|\alpha|}}{\partial \xi^{\alpha}} \hat{\Lambda}_{\tau}(\xi)\right| \leqq \gamma_{\alpha} K(\xi)^{\tau-m[\alpha: m \mid}
$$

Then, for the partition of the unity (2.6) we have

$$
\sum_{\eta}\left\|\left(\Lambda_{\tau} \Theta_{\eta}-\Theta_{\eta} \Lambda_{\tau}\right) u\right\|^{2} \leqq C\left(\gamma_{k}^{2}\|u\|^{2}+\sum_{0<|\alpha|<k}\left\|\left(x^{\alpha} \Lambda_{\tau}\right) u\right\|^{2}\right) \quad u \in C_{0}^{\infty}\left(R^{\nu}\right)
$$ where C is a constant depending on $\nu, \varepsilon, \tau, k$, and $M\left(=\underset{1 \leq j \leqq \nu}{\operatorname{Max}} m / m_{j}\right)$ and k is an integer $\geqq \tau+(\nu+1) M$.

Proof is essentially the same as that of S. Mizohata [6] if we remark that $|\xi| \leqq C K(\xi)^{M}(|\xi| \geqq 1)$ and $m|\alpha: m| \geqq|\alpha|$.

Lemma 3. Let $H_{j}(t)(j=1, \cdots, k)$ be operators of C_{m}^{m} defined in (x)-space with t as a parameter.

Setting $A=\sum_{j=0}^{k} H_{j} \Lambda^{j} \frac{\partial^{k-j}}{\partial t^{k-j}}\left(H_{0}=1\right)$ we assume

$$
\begin{equation*}
\left|\sum_{j=0}^{n} \sigma\left(H_{j}\right)(t, x, \xi) \hat{\Lambda}(\xi)^{j}(\sqrt{-1} \lambda)^{k-j}\right|^{2} \geqq \delta^{2}\left(\lambda^{2 k}+K(\xi)^{2 k}\right) \quad(\delta>0,|\xi| \geqq 1) \tag{2.7}
\end{equation*}
$$

Then, for every $\varepsilon_{0}(>0)$ we have

$$
\begin{equation*}
\left(1-\varepsilon_{0}\right)\left(\left\|\left\|\frac{\partial^{k}}{\partial t^{k}} u\right\|^{5)}+\right\|\left\|\Lambda_{0}^{k} u \mid\right\|^{2}\right) \leqq \left\lvert\,\|A u\|\left\|^{2}+C_{\delta_{0}} \sum_{i+j \leqq k-1}\right\| \frac{\partial^{i}}{\partial t^{i}} \Lambda_{0}^{j} u\right. \|^{2} \tag{2.8}
\end{equation*}
$$

$$
u \in C_{0}^{\infty}\left(\Xi_{h}\right)
$$

for sufficiently small h depending on ε_{0}.
Proof. Consider the partition of the unity of (2.6) and let $H_{j}^{(n)}(t)$ be an operator of class C_{m}^{m} with $\sigma\left(H_{j}^{(\eta)}(t)\right)=\sigma\left(H_{j}\right)(t, \eta, \xi)$ for each fixed
5) For a function $u=u(t, x),\| \| u \|^{2}$ means $\int|u(t, x)|^{2} d t d x$.
η. If we define $\Lambda_{j}(j=1, \cdots, k)$ by $\widehat{\Lambda_{j} u}(\xi)=\widehat{\Lambda}(\xi)^{j} \alpha(\xi) \widehat{u}(\xi)$ with $\alpha(\xi) \in C_{(\xi)}^{\infty}$ ($=0$ for $|\xi| \leqq 1$, =1 for $|\xi| \geqq 2$), we can write

$$
\begin{aligned}
& \left\|\left.\|A u\|\right|^{2}=\sum_{\eta}\right\|\left\|\Theta_{\eta} A u\right\|\left\|^{2}=\sum_{\eta}\right\| \| \Theta_{\eta} \sum_{j=1}^{k}\left(H_{j}(t)-H_{j}^{(\eta)}(t)\right) \Lambda^{j} \frac{\partial^{k-j}}{\partial t^{k-j}} u \\
+ & \Theta_{\eta} \sum_{j=1}^{k} H_{j}^{(\eta)}(t)\left(\Lambda^{j}-\Lambda_{j}\right) \frac{\partial^{k-j}}{\partial t^{k-j}} u+\sum_{j=1}^{k}\left(\Theta_{\eta} H_{j}^{(\eta)}(t) \Lambda_{j}-H_{j}^{(\eta)}(t) \Lambda_{j} \Theta_{\eta}\right) \frac{\partial^{k-j}}{\partial t^{k-j}} u \\
+ & \sum_{j=1}^{k}\left(H_{j}^{(\eta)}(t)-H_{j}^{(\eta)}(0)\right) \Lambda_{j} \Theta_{\eta} \frac{\partial^{k-j}}{\partial t^{k-j}} u+\left(\frac{\partial^{k}}{\partial t^{k}}+\sum_{j=1}^{n} H_{j}^{(\eta)}(0) \Lambda_{j} \frac{\partial^{k-j}}{\partial t^{k-j}}\right) \Theta_{\eta} u\| \|^{2} \\
\equiv & \sum_{\eta}\| \| \sum_{i=1}^{5} I_{i, \eta}\| \|^{2} \geqq\left(1-\varepsilon_{1}\right) \sum_{\eta}\left\|\left|\left\|I_{5, \eta} \mid\right\|^{2}-C \varepsilon_{1}^{-1} \sum_{i=1}^{4} \sum_{\eta}\| \| I_{i, \eta}\| \|^{2} \quad\left(\varepsilon_{1}>0\right) .\right.\right.
\end{aligned}
$$

Then, we have for $I_{5, \eta}$ by (2.7) and Lemma 2

$$
\sum_{\eta}\| \| I_{5, \eta} \left\lvert\,\left\|^{2} \geqq\left(1-\varepsilon_{1}\right) \delta^{2}\left(\left\|\frac{\partial^{k}}{\partial t^{k}} u\right\|\left\|^{2}+\right\|\left\|\Lambda_{0}^{k} u\right\| \|^{2}\right)-C \varepsilon_{1}^{-1} \sum_{i+j \leqq k-1}\right\|\left\|\frac{\partial^{i}}{\partial t^{i}} \Lambda_{0}^{j} u\right\|^{2}\right.,
$$

for $I_{1, \eta}$ and $I_{4, \eta}$

$$
\sum_{\eta}\left(| |\left|I_{1, \eta}\| \|^{2}+\right|\left\|I_{4, \eta}\right\| \|^{2}\right) \leqq C\left(\varepsilon^{2}+h^{2}\right) \sum_{i+j \leqq n}\| \| \frac{\partial^{i}}{\partial t^{i}} h_{0}^{j} u\| \|^{2}
$$

and for $I_{2, \eta}$ and $I_{3, \eta}$ by Lemma 2

$$
\sum_{\eta}\left(\| \| I_{2, \eta}\| \|^{2}+\left\|I_{3, \eta}\right\| \|^{2}\right) \leqq C_{s} \sum_{i+j \leq k-1}\left\|\frac{\partial^{i}}{\partial t^{i}} \Lambda_{0}^{j} u\right\|^{2}
$$

Since $\sum_{i+j=k}\| \| \frac{\partial^{i}}{\partial t^{i}} \Lambda_{0}^{j} u \|^{2} \leqq C\left(\left\|\frac{\partial^{k}}{\partial t^{k}} u\right\|\left\|^{2}+\left|\left\|\Lambda_{0}^{k} u \mid\right\|^{2}\right)\right.\right.$, we get (2.8) if we fix $\varepsilon_{1}(>0)$ such that $\left(1-2 \varepsilon_{1}\right)^{2} \geqq\left(1-\varepsilon_{0}\right)$ for given ε_{0} and take sufficiently small ε and h depending on ε_{1}. Q.E.D.
(See References of the following article.)

[^0]: 1) Strictly speaking it is sufficient to assume that $a_{i, \alpha}$ are in $C_{(t, x)}^{\boldsymbol{t}}$ for $k \geqq m+(\nu+1) \underset{1 \leqq j \leqq \nu}{\operatorname{Max}} m / m_{j}$.
[^1]: 2) We shall denote by C positive constants, not necessarily the same even in the same formula.
 3) For $u \in L^{2}$ we define the Fourier transform $\mathfrak{F}[u]$ by $\mathfrak{F}[u](\xi)=\widehat{u}(\xi)$

 $$
 =\frac{1}{\sqrt{2 \pi^{\nu}}} \int \mathrm{e}^{\sqrt{-1} x \cdot \xi} u(x) d x\left(x \cdot \xi=\sum_{j=1}^{n} x_{j} \cdot \xi_{j}\right) .
 $$

 4) In what follows we shall use a notation Λ_{0} in the case $\hat{\Lambda}=K(\xi)$.
