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16. Time Change and Killing [or Multi.Dimensional
Reflecting Diffusion

By Keniti SATO
Department of Mathematics, Tokyo Metropolitan University

(Comm. by Zyoiti SUETUNA, M.J.A., Feb. 12, 1963)

1o Introduction. H. Tanaka and the author have defined in

8 the local time on the boundary for multi-dimensional reflecting
diffusion. We show that this local time serves as a time change
function in reducing the diffusion to the Markov process on the
boundary introduced by T. Ueno [9_. This fact has been conjectured
by him in 9. In order to treat more general cases with killing
(mass defect), we prove some general results on Markov processes.
We also construct the diffusion with killing and sojourn on the
boundary, which is an extension of the results obtained by K. Ito
and H. P. McKean, Jr. [5 in one dimension and by N. Ikeda
in two dimensions.

The author wishes to thank T. Ueno for a variety of advices.
2. Definitions and notations. We use the definitions and nota-

tions of E. B. Dynkin [1 concerning Markov processes, unless spe-
cifically mentioned. Suppose a (temporally homogeneous) Markov
process X--(xt, , tt, P, Ot) with state space (E, .). We consider
the following conditions:

M 1. E is a locally compact Hausdorff space with a countable
base and

_
is the a-algebra generated by the open sets.

M2. Px(>0)--I for all xeE.
M 3. X is right-continuous.
M 4. X has the strict Markov property.
M 5. If r(o)j’r((o)5(o) for all oB, where r are random

variables independent of the future, then, for all x, x,,-->x (a.e. B, P).
M 6. -t+0 t"

If X satisfies the above conditions, X is a standard process in
the sense of Dynkin. We call t(w) (wet?t) a continuous [right-
continuous non-negative additive functional of X, if it satisfies the
following five conditions:

A 1. s(O.))’J-sDt((JO)--:)s+t(O) for all
A 2. Ft is _t-measurable;)

1) /t is the family of B such that, for every finite measure z, there exist B and
B.lt satisfying B=B=B. and P(B1)=P(B).

2) We put t-’- t+o N 37*.
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A 8. 0_<_()<_+ .
A4. P(0=0)=l for all x.
A 5. (w) is continuous right-continuous] in t.

Often we impose the condition
A6. t(o) < + c.

We say that t(w)(wegt) is a continuous [right-continuous] non-
negative additive functional of X in the wide sense, if it satisfies
A 1, 3, 4, 5, and

A2’. t is t* measurable.

Replace, in the definition of subprocess X in [1], t-measurability

of at(w) 3.21 by t-measurability. Then we call X subprocess of
X in the wide sense. The meaning of the multiplicative functional
in the wide sense is obvious.

3. Time change and killing. Let X=(xt, ,t, P, Ot) be a
Markov process with state space (E, ) satisfying M 17, t()be a
continuous non-negative additive functional of X, and @t(w) be a right-
continuous non-negative additive functional of X satisfying A6.
Put Vt(W)--sup {8: s(W)t and s<()}, ’()--0(), x;()-xt() (Ot
<5’(w)),-t,= t, and P-P, noting that r is a random
variable independent of the future for X. Put E’={x: P(r0>0)-0}
and ’--[E’]. An almost similar argument to Volkonski
shows the following

THEOREM 3.1. X’--(x, 5’, , P:, ) is a Markov process with
state space (E’, ’) and satisfies M 2, 3, 4, 6, and 7.a) We say that X
is transformed to X’ through time change by .

Put (w)-t(w). Then the following theorems hold.
THEOREM 3.2. is a right-continuous non-negative additive

functional of X’ in the wide sense with the property A 6.
THEOREM 3.3. There exists the canonical subprocess of X’ in the

wide sense Y()-(y), (), (), P), O)) corresponding to the multi-
plicative functional in the wide sense exp (--). Y() satisfies M2,
3, 4, and 6.

In the construction of Y() from X, we have carried out killing
after time change. Let us change the order of their operations.
Let XC= (x, c, 2, p2, 0) be the canonical subprocess of X corre-
sponding to the multiplicative functional exp (--). 0 is made to
satisfy
( 1 O(-B, 5c>0)--(-0B, 5c>t) for all B*.
Define =(t, t, t, x, t) where t-- and other elements are
the same as in Xc. Then we can prove

3) In the case of standard process, we need not take a version in Theorem 1.4 of
Volkonski [10] (communicated from M. Nagasawa).
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THEOREM 3.4. X is a subprocess of X and satisfies M 1--7.
The techniques essential to the proof are found in [1 and in

the proof of Theorem 4.1 of Meyer [7.
Put t()--(7) for tg=[>t}. Then, using (1), we have
THEOREM 3.5. t is a continuous non-negative additive func-

tional of X.
Hence, by Theorems 3.1 and 3.4, we can transform X to a new

Markov process y2_(y(, ., /, p(, t) through time change by

t. Of course y2 has a restricted state space and satisfies M 2, 3,
4, 6, and 7.

We are now in position to state the following
THEOREM 3.6.4) yl) and Y) have the same state space (E’, B’).

They are mutually equivalent and, in fact,

for every bounded measurable function f.
If a Markov process Y is equivalent to Y() and Y(), we call Y

a process obtained from X through time change by t and killing by

t.
4. Reflecting diffusion and fundamental lemmas. Apart from

general theory we turn to a specia! object, the reflecting diffusion.
From now on we make all the assumptions in [8. Thus D is a

domain with compact closure D and sufficiently smooth boundary 3D,
and A is a second-order elliptic differential operator without non-
differentiation term. From the reflecting A-diffusion [x, W, B, P
defined in 8, we get a Markov process X=(x, + ,/,P,t) satisfy-

ing M 17, by putting /--:+o and B--{w: w+B] (cf. [11]). The
local time on the boundary it(w)--i(t, w) defined in [8J is a continuous
non-negative additive functional of X with the property A 6.

Suppose that b(x) and (x) is non-negative functions in C’(D))

and C"(3D), respectively. Then, we can prove the following two
lemmas by the use of a lemma in [8] and the results of S. Ito [6.

LEMMA 4.1. Given a function f(x) in C’(D), put

u(t, x)-Mlf’e-:’-o’’f(x)dsl.)

4) Special cases of this theorem are, though less explicite, found in [5], [3] and [2].

5) C,(D-) is the set of functions of whose k-th order derivatives are uniformly

HSlder continuous. C0,(D) is, especially, the set of uniformly HSlder continuous func-

tions on D.

6) tr(w) does not increase at r unless xr(w)OD, so that (xr)dtr is determined

by giving the function on the boundary.
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(aThen u(t, x) is the unique function satisfying -+ b--A u(t, x) --/(x)

"! 3 )u(t," x)--O on 3D, and u(O, x)-O.on D, ---LEMMA 4.2. Given f(x) in C.(OD), put

The (t, ) i the iqefetio atifi + b--A (t, w) =0 o

D, t- )u(t, x)=f(x) on OD, and u(O, x)-O.

5. Markov process on the boundary. Let k0 be in C’(D),
a>0 be in C,(3D), and 0 be in C’(D). Let H denote the
operator which transforms any continuous function f on the boundary
to the solution u of (A+k)u=O with boundary value f.) Put

=---j(x,)dt, and ,-f’ [k(x)ds+ .f’[ y(x) ()dt. Obviously, , and

t are continuous additive functionals of X with the property A 6.
THEOREM 5.1.8) Let Y be a Markov process obtained from X

through time change by t and killing by t. Then the state space
of Y is 3D, and the transition operators of Y form a strongly con-

tinuous semigroup on C(3D) with generator) 1 H,+.o)

PROOF. Clearly the state space of Y is contained in D. Let
K be the resolvent operator of Y. Then Theorem 3.6 implies that

u(t,x)--M e--f()d and using the result of [6], we can

show that (2---- 1 3 H)Kf=f for feC’(3D). Accordingly, by
a n

T. Ueno [9, K is the resolvent operator of the strongly continuous

semigroup on C(3D) with generator I 3 H+. This semigroup

coincides with the transition semigroup of Y and the proof is com-
plete.

In case both k and vanish, Y is non-cut-off. Hence the following

7) The existence and the uniqueness of such u are known (cf. [6]).
8) In the case of k=O, =1, and r----0, the results of Theorems 5.1 and 5.2 were

published in [4] in mimeographed form.
9) By the term of generator, we mean the infinitesimal generator in the sense of

Hille-Yosida.

10) nHk is the smallest closed extention (in C(D))of -n-nHk restricted to

{f Hf CI(D)}.
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THEOREM 5.2. Px(lim t-- -F- oo)- 1 /or all x D.

5. Diffusion with a certain boundary condition. Let
be as in the previous section, a>0 be in C,(D), and 0 be in C,
(). Put ()as+ a, -. () ()

*, nd A-A+k. Then he ollowing heorem can be proved.

THEOREM 6.1. Let Z be a Markov process obtained from X
through time change by t and killing by t. Then the transition

operators of Z form a strongly continuous semigroup on C(D) with

generator A restricted to u: 3 +y+3 u-O Moreover Z( (cf.

Section 3) is a continuous Markov process with state space D and
the properties M 1--7.

The method of proof is similar to that of Theorem 5.1, but in
this case we use both Lemmas 4.1 and 4.2. If G is the resolvent

oeraor of N, (2--A)Gff=f and +r+ Gff=O for

Striet increase of implies g for .
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11) / is the smallest closed extention of A. Au() on 3D is understood as

lim Au(m). +r+aA is the extension of +r+aA defined in [9].
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