37. Tauberian Theorems Concerning the Summability Methods of Logarithmic Type

By Kazuo Ishiguro
Department of Mathematics, Hokkaido University, Sapporo (Comm. by Kinjirô Kunugi, M.J.A., March 12, 1963)

§ 1. In the recent papers the author proved some theorems concerning the summability methods of logarithmic type. (See [3, 4].) When a sequence $\left\{s_{n}\right\}$ is given we define the method l as follows: If

$$
\begin{align*}
& t_{0}=s_{0}, \quad t_{1}=s_{1}, \\
& t_{n}=\frac{1}{\log n}\left(s_{0}+\frac{s_{1}}{2}+\cdots+\frac{s_{n}}{n+1}\right) \quad(n \geq 2) \tag{1}
\end{align*}
$$

tends to a finite limit s as $n \rightarrow \infty$, we say $\left\{s_{n}\right\}$ is summable (l) to s and write $\lim s_{n}=s(l)$. (See [2] p. 59, p. 87, [5] p. 32.)

On the other hand we define the method L as follows: If

$$
\begin{equation*}
f(x)=\frac{-1}{\log (1-x)} \sum_{n=0}^{\infty} \frac{s_{n}}{n+1} x^{n+1} \tag{2}
\end{equation*}
$$

tends to a finite limit s as $x \rightarrow 1$ in the open interval $(0,1)$, we say that $\left\{s_{n}\right\}$ is summable (L) to s and write $\lim s_{n}=s(L)$. (See [1].)

When a series $\sum_{n=0}^{\infty} a_{n}$ is given we define the method l and the method L as before by putting

$$
s_{n}=a_{0}+a_{1}+\cdots+a_{n} \quad(n \geq 0)
$$

In the present note we shall prove the following two theorems.
Theorem 1. If $\sum_{n=0}^{\infty} a_{n}$ is summable (l) to s, and if

$$
\begin{equation*}
a_{n}=o\left(\frac{1}{n \log n}\right) \tag{3}
\end{equation*}
$$

then $\sum_{n=0}^{\infty} a_{n}$ converges to the same value.
Theorem 2. If $\sum_{n=0}^{\infty} a_{n}$ is summable (L) to s, and if it satisfies (3), then $\sum_{n=0}^{\infty} a_{n}$ converges to the same value.

Since the series summable (l) is also summable (L) to the same sum, Theorem 2 includes Theorem 1. (See [3].) However the proof of Theorem 1 seems to be fundamental, we shall prove Theorem 1 first.
§ 2. Proof of Theorem 1. From (1) we get

$$
s_{n}-t_{n}=\frac{1}{\log n}\left\{s_{n} \log n-\left(s_{0}+\frac{s_{1}}{2}+\cdots+\frac{s_{n}}{n+1}\right)\right\} .
$$

Since

$$
\log n=1+\frac{1}{2}+\cdots+\frac{1}{n+1}+O(1) \quad \text { as } \quad n \rightarrow \infty
$$

we get

$$
\begin{aligned}
s_{n}-t_{n}=\frac{1}{\log n}\left\{s _ { n } \left(1+\frac{1}{2}+\cdots\right.\right. & \left.+\frac{1}{n+1}\right)+s_{n} O(1)- \\
& \left.-\left(s_{0}+\frac{s_{1}}{2}+\cdots+\frac{s_{n}}{n+1}\right)\right\}
\end{aligned}
$$

On the other hand we get, from (3),

$$
\begin{equation*}
\frac{s_{n}}{\log n}=o(1) \quad \text { as } \quad n \rightarrow \infty \tag{4}
\end{equation*}
$$

Hence

$$
\begin{aligned}
s_{n}-t_{n}= & \frac{1}{\log n}\left\{\left(s_{n}-s_{0}\right)+\frac{1}{2}\left(s_{n}-s_{1}\right)+\cdots+\frac{1}{n}\left(s_{n}-s_{n-1}\right)\right\}+o(1) \\
= & \frac{1}{\log n}\left\{\left(a_{1}+a_{2}+\cdots+a_{n}\right)+\right. \\
& \frac{1}{2}\left(a_{2}+a_{3}+\cdots+a_{n}\right)+ \\
& \left.\quad+\cdots+\frac{1}{n} a_{n}\right\}+o(1) \\
= & \frac{1}{\log n}\left\{\frac{2 a_{1}}{2}+\frac{3 a_{2}\left(1+\frac{1}{2}\right)}{3}+\frac{4 a_{3}\left(1+\frac{1}{2}+\frac{1}{3}\right)}{4}+\right. \\
& \left.+\cdots+\frac{(n+1) a_{n}\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}\right)}{n+1}\right\}+o(1) .
\end{aligned}
$$

On the other hand we obtain, from (3),

$$
\lim _{n \rightarrow \infty}(n+1) a_{n}\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}\right)=0 .
$$

Since the method l is regular, we can deduce

$$
\lim _{n \rightarrow \infty}\left(s_{n}-t_{n}\right)=0,
$$

obtaining $\lim _{n \rightarrow \infty} s_{n}=s$ from the assumption. (See [2] p. 59.)
This completes the proof of Theorem 1.
Proof of Theorem 2. From (2) we get, for $0<x<1$,

$$
\begin{aligned}
s_{p}-f(x) & =\frac{-1}{\log (1-x)}\left\{\sum_{n=0}^{\infty} \frac{s_{p} x^{n+1}}{n+1}-\sum_{n=0}^{\infty} \frac{s_{n} x^{n+1}}{n+1}\right\} \\
& =\frac{-1}{\log (1-x)} \sum_{n=0}^{\infty} \frac{\left(s_{p}-s_{n}\right)}{n+1} x^{n+1} \\
& =\frac{-1}{\log (1-x)} \sum_{n=0}^{p-1} \frac{\left(s_{p}-s_{n}\right)}{n+1} x^{n+1}+\frac{-1}{\log (1-x)} \sum_{n=p+1}^{\infty} \frac{\left(s_{p}-s_{n}\right)}{n+1} x^{n+1} \\
& =I+J, \text { say. Here we get }
\end{aligned}
$$

$$
|I| \leq \frac{-1}{\log (1-x)} \sum_{n=0}^{p-1} \frac{\left|s_{p}-s_{n}\right|}{n+1}
$$

If we put $x=1-\frac{1}{p}$, then

$$
|I| \leq \frac{1}{\log p} \sum_{n=0}^{p-1} \frac{\left|s_{p}-s_{n}\right|}{n+1}
$$

$$
\begin{aligned}
& \leq \frac{1}{\log p}\left\{\left|a_{1}\right|+\left|a_{2}\right|+\cdots+\left|a_{p}\right|+\right. \\
& \left.\quad+\frac{1}{2}\left(\left|a_{2}\right|+\left|a_{3}\right|+\cdots+\left|a_{p}\right|\right)+\cdots+\frac{1}{p}\left|a_{p}\right|\right\} \\
& =\frac{1}{\log p}\left\{\frac{2\left|a_{1}\right|}{2}+\frac{3\left|a_{2}\right|\left(1+\frac{1}{2}\right)}{3}+\frac{4\left|a_{3}\right|\left(1+\frac{1}{2}+\frac{1}{3}\right)}{4}+\right. \\
& \left.\quad+\frac{(p+1)\left|a_{p}\right|\left(1+\frac{1}{2}+\cdots+\frac{1}{p}\right)}{p+1}\right\} .
\end{aligned}
$$

Since we get, from (3),

$$
\lim _{p \rightarrow \infty}(p+1)\left|a_{p}\right|\left(1+\frac{1}{2}+\cdots+\frac{1}{p}\right)=0
$$

we obtain

$$
I=o(1) \quad \text { as } \quad p \rightarrow \infty,
$$

from the regularity of the method l.
Next we get, for $0<x<1$,

$$
\begin{aligned}
|J| & \leq \frac{-1}{\log (1-x)} \sum_{n=p+1}^{\infty} \frac{\left|s_{n}-s_{p}\right|}{n+1} x^{n+1} \\
& \leq \frac{-1}{\log (1-x)} \sum_{n=p+1}^{\infty} \frac{\left|a_{p+1}\right|+\left|a_{p+2}\right|+\cdots+\left|a_{n}\right|}{n+1} x^{n+1} .
\end{aligned}
$$

Being given any $\varepsilon>0$ we can find a $p_{0}=p_{0}(\varepsilon)$ such that

$$
\left|a_{p}\right|<\frac{\varepsilon}{p \log p}
$$

provided $p>p_{0}$. Hence, for $p>p_{0}$, we obtain

$$
\begin{aligned}
&\left|a_{p+1}\right|<\frac{\varepsilon}{(p+1) \log (p+1)}<\frac{\varepsilon}{p+1}<\frac{\varepsilon}{p} \\
&\left|a_{p+2}\right|<\frac{\varepsilon}{p+2}<\frac{\varepsilon}{p} \\
& \ldots \ldots \cdots \cdots \\
&\left|a_{n}\right|<\frac{\varepsilon}{n}<\frac{\varepsilon}{p}
\end{aligned}
$$

so that, for $0<x<1$,

If we put $x=1-\frac{1}{p}$, then

$$
\begin{aligned}
|J| & \leq \frac{-1}{\log (1-x)} \sum_{n=p+1}^{\infty} \frac{\frac{\varepsilon}{p}(n-p)}{n+1} x^{n+1} \\
& \leq \frac{-1}{\log (1-x)} \cdot \frac{\varepsilon}{p} \cdot \sum_{n=p+1}^{\infty} x^{n+1} \\
& \leq \frac{-1}{\log (1-x)} \cdot \frac{\varepsilon}{p} \cdot \frac{1}{1-x} .
\end{aligned}
$$

$$
|J| \leq \frac{1}{\log p} \cdot \frac{\varepsilon}{p} \cdot p=\frac{\varepsilon}{\log p}
$$

Hence we get $J=o(1)$ as $p \rightarrow \infty$. Consequently we have

$$
\lim _{p \rightarrow \infty}\left\{s_{p}-f\left(1-\frac{1}{p}\right)\right\}=0
$$

obtaining $\lim _{p \rightarrow \infty} s_{p}=s$ from the assumption of this theorem.
This completes the proof of Theorem 2.

References

[1] D. Borwein: A logarithmic method of summability, J. London Math. Soc., 33, 212-220 (1958).
[2] G. H. Hardy: Divergent Series, Oxford (1949).
[3] K. Ishiguro: On the summability methods of logarithmic type, Proc. Japan Acad., 38, 703-705 (1962).
[4] -: A converse theorem on the summability methods, Proc. Japan Acad., 39, 38-41 (1963).
[5] O. Szász: Introduction to the Theory of Divergent Series, Cincinnati (1952).

