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Introduction. In this note we shall try to generalize some of
the results established by 01einik 6 and V:born [7J for linear
elliptic and parabolic differential equations of the second order.
Namely, we shall eonsider second order quasi-linear parabolic and
e’lliptie equations and discuss first the behavior of their solutions at
the boundary of the domain where they attain positive maximum or
negative minimum. Next we shall formulate the uniqueness theorems
for some boundary value problems with oblique derivatives. In our
diseussion extensive use is made of the maximum prineiples proved
by the author 8, [9 for quasi-linear elliptic and parabolic equa-
tions. Sinee the treatment is similar for both parabolie and elliptic
eases, we shall limit ourselves in our exposition to the detailed eon-
sideration of parabolie equations, while for elliptic equations only the
corresponding theorems will be stated.

The author has to aeknowledge gratefully the encouragement and
the eritieism presented by Professor Masuo Hukuhara and Professor
Yoshikazu Hirasawa during the preparation of this note.

1. Quasi.linear parabolic equations. In this section we are
eoneerned with quasi-linear parabolie equations of the form

(1) a(x, t, u, grad u) u _u_f(x t, u, grad u),
,= 3xx t

x-- (x,. ., x), grad u- (3u/3x,..., 3u/3x).
We denote by D a bounded domain in the (n+ 1)-dimensional (x, t)-

space bounded by two hyperplanes t--0 and t--T0, and by a lateral
surface S lying between these hyperplanes. The union of the surface
S and the lower basis B--D{t--O} is referred to as the normal
boundary of D and is denoted by 3D. We assume that the functions

a,(x, t, u, p) and f(x, t, u, p) are defined in the domain ,: {(x, t)D,
ul, I[Pl[} and are bounded in compact subset of . We
impose the following assumption on the lateral surface S of D: for
each point P(x, t) S there exists an (n+ 1)-dimensional sphere Ke
including P on its boundary such that all the points of K lying in
the strip 0t<__T belong to D--3D. Finally we assign to each point
of S a direction which makes an acute angle with the inwardly
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directed normal n to S at that point.

Theorem 1. Let u(x,t) be continuous in D and satisfy the

equation in D--D. Let P(x,t)eS be a point where the solution

u(x, t) attains its positive maximum in D. Then we have either
u--=const, in some neighborhood of P for t t or

( 2 lim supu(P)-u(P) <0, r(P, P)
where r(P, P) is the distance between P and P and P approaches
P along the direction mentioned above, provided that the following
assumptions are satisfied:

I) There exists a positive lower semi-continuous function
h(x, t, u, p) such that

a(x, t, u, p)$$>=h(x, t, u,
.3=I

for every (x, t, u, p) and for every real vector
II) f(x, t, u, O) >__ 0 for u >= 0;

III) f(x,t,u,p) satisfies locally the Lipschitz condition with
respect to u and p.

Proof. Let tT. The case t--T can be treated similarly. We
find a sphere Ke,D with radius R which touches the lateral surface
S at P. It follows from the maximum principle ([9, Theorem 3)
that u(P)u(P) in the interior of K, provided u(x, t) is not constant
in some neighborhood of P for tt. We may assume that the
center of Ke, coincides with the origin of the coordinate system.
Draw a sphere K with center P and radius less than R and set
o--KK,. Define the function v(x, t) by

v(x, t)--u(x, t)--u(x, t)+exp(--k(x+t))--exp(--kR),
k and e being positive constants. It is clear that v(x, t) is non-
positive on the boundary of o for sufficiently small s: more precisely,

v equals 0 at P and is negative elsewhere. Our assertion is that
for such e and for suitably chosen k v(x, t) is negative in w. This
assertion may be verified by means of an argument analogous to
that employed by the author [8J, [9. In fact, assume for contra-
diction that m--maxv is positive for every k and let P be an

interior point of w such that v(P)--m. Applying the parabolic
differential operator

--,,= a(x, t, u(x, t), grad u(x, t))
3x3x

to functions v and noting that they are maximal at P we have
first v(P)<__O. By means of the device used by the author we
have on the other hand v.(P)>O for sufficiently large k. The
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contradiction thus obtained proves our assertion from which the
desired inequality immediately follows:

limsupu(P)-uP1)--_<--ev(P1)
----2ek exp (--k(]]xll+t))ilx]l+t cos (n, 1)<0.

Theorem 2. We consider the equation (1) under the following
assumptions:

I) aij(x, t, u, p)$i$jh(x, t, u,
i,j=l

II) sign u.f(x, t, u, 0)>=0 and f(x, t, O, 0)0;
III) f(x, t, u, p) satisfies locally the Lipschitz condition with re-

spect to u and p.

We assume that a solution u(x,t) of (1)continuous in D satisfies
the boundary conditions

(3) a 3u + bu-O on S,

4 u(x, o)-o,
where a>=O, b<=O and lal + lbl O on S.

Under these assumptions we conclude that u(x, t)vanishes iden-

tically in D.
Remark. If the direction lies on the hyperplanes t--const, then

the assertion of Theorem 2 is valid under, the same assumptions as in
Theorem 2 except that the condition II) is replaced by a less restric-
tive condition

II’) f(x, t, O, 0)-0.
Proof. Assume that u0 in D. Without loss of generality

we may assume that m--ma_xu(x, t)O. Let P be a point where

u(P)-m. From the strong maximum principle it follows that P
necessarily belongs to S. The boundary conditions (3), (4)imply that
u(P) >_0. Hence u(x, t)must be a constant in a neighborhood of
l

P for t<t by virtue of Theorem 1. Joining P and a point P. on

the lower basis by a curve in D along which the t coordinates vary
monotonically and applying the strong maximum principle we conclude
finally that u(P)--m which contradicts the condition (4).

Theorem :. The quasi-linear parabolic equation (1) possesses

at most one solution which is continuous in D, bounded in D with
its derivatives appearing in (1) and satisfies the boundary conditions

(5) a3U+bu- on S,

6 )
provided that the following restrictions are satisfied.:
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I) a(x, t, u, p)$$>=h(x, t, u,

II) aij(x, t, u, p) and f(x, t, u, p) satisfy locally the Lipschitz
condition with respect to u and p;

Ill) a >__ O, b <= O and
Proof. Let u(x, t) and uo(x, t) be two solutions of one and the

same problem (1), (5), and (6). Then the difference v=U--Uo evidently
satisfies a quasi-linear parabolic equation

(1’) A(x, t, v, grad v) - --F(x, t, v, grad v),

where
A(x, t, v, grad v)-a(x, t, v+uo, grad v+ grad u0)

and
F(x, t, v, grad v)=f(x, t, v+ Uo, grad v+ grad u0)--f(x, t, Uo, grad uo)

3u0,= (a(x, t, V+Uo, grad v+grad Uo)--a(x, t, Uo, grad u0))
3x3x

Applying Theorem 2 to the equation (1’) we can conclude that v0
and hence that UUo in D.

2. Quasi.linear elliptic equations. In this section we consider
second order quasi-linear elliptic equations of the form

7 ) (x, u, grad u) 3u --(x, u, grad u),
3x3x

where the functions a(x, u, p) and f(x, u, p) are defined in some
domain : {x G, u < , p[[ < }, (G: a bounded domain in the Eu-
clidean n-space) and are bounded in any compact subset of . We
assume that the boundary 3G of G has the following property: for

each point P3G there exists a sphere Ke contained in G whose
boundary has only one point P in common with 3G. To every point
P3G we assign a direction which makes an acute angle with the
inwardly directed normal n at that point.

Theorem 4. Let the following assumptions be fulfilled:
I) There exists a positive lower semi-continuous function

h(x, u, p) such that

Z a(x, u, p)$$h(x, u,
i,=1

for every (x, u, p) and every real n-tuple
II) f(x, u, 0)0 for u0;

III) f(x, u, p) satisfies locally the Lipschitz condition with respect
to u and p.

Let further u(x) be a solution of the equation (7) in G which is

continuous in G. Then if u(x) is not constant in G and assumes
its non-negative maximum at some point P on the boundary G,
we have
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8 ) lim supu(P)--u(P) <0, r(P, P1)
where P approaches PI along the assigned direction 1.

Theorem ;. Consider the equation (7) under the following re-
strictions:

I) , a(x, u, p)$$>=h(x, u,
,.=I

II) f(x, O, 0)----0 and Bin .f(x, , 0)>0 for 0;
III) f(x, u, p) satisfies locally the Lipschitz condition with respect

to u and p.

Let further a solution u(x) continuous in G of (7) satisfy the
boundary condition with an oblique derivative

(9) au+bu--O on 3G,

where aO,bO and lal+lbl>O. Under these assumptions we

conclude that u(x) vanishes indentically in G.
Theorem 6. In this theorem we deal with the quasi-linear

elliptic equation

(10) a(x, grad u) u f(x, u, grad u)
,=

with the boundary condition of the form
3u(11) a- +bu on G.

The boundary value problem (10), (11) possesses at most one solution

which is continuous in G and bounded with its derivatives appearing
in (10), provided that following assumptions are satisfied:

I) There exists a positive lower semi-continuous function
h(x, p) such that

a(x, p)h(x,
for every (x, p) under consideration and every real vector

II) f(x, u, p) is strictly increasing with respect to u;
III) f(x, u, p) satisfies locally the Lipschitz condition with respect

to u and p;
IV) a(x, p) satisfy locally the Lipschitz condition with respect

to p;
V) aO, b_O and
Theorem 7. We now consider the equation

(12) ,=a(x, grad u) u f(x, grad u)xx
with the boundary condition

-= on

under the assumptions
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’/,.=

II) a(x, p) and f(x, p) satisfy locally the Lipschitz condition
with respect to p.

We then conclude that any two solutions of the problem (12), (13)
differ only by a constant.
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