48. A Note on a Weak Subsolution

By Kazunari Hayashida
Department of Applied Mathematics, Nagoya University
(Comm. by Kinjirô Kunugi, m.J.A., April 12, 1963)

1. Let L be an elliptic differential operator of order $2 s$ defined in a domain \mathfrak{D} of the euclidean n-space R^{n} :

$$
\begin{equation*}
L=\sum_{0<|\alpha| \leq 2 s} a_{\alpha}(x) D^{\alpha}, D^{\alpha}=\frac{\partial^{|\alpha|}}{\partial x_{1}^{\alpha_{1}} \cdots \partial x_{n}^{\alpha_{n}}}, \alpha=\left(\alpha_{1}, \cdots, \alpha_{n}\right) \tag{1}
\end{equation*}
$$

where $a_{\alpha}(x) \in C^{[\alpha]}(\mathfrak{D})\left(|\alpha|=\alpha_{1}+\cdots+\alpha_{n}\right)$. If a measurable function u is essentially bounded from the above in \mathfrak{D} and satisfies the inequality

$$
\int_{\mathscr{D}} u(x) L^{*} \varphi(x) d x \geqq 0
$$

for all non-negative functions $\varphi \in C^{2 s}(\mathfrak{D})$ with compact carrier in \mathfrak{D}, where L^{*} is the adjoint operator of L, then we say that u is a weak L-subsolution in \mathfrak{D}. In the case when L is of second order, a weak L-subsolution is a weakly L-subharmonic function in the sense of Littman [2]. In this note, we shall prove the following

Theorem. If u is a weak L-subsolution in \mathfrak{D} and assumes its essential supremum M (over \mathfrak{D}) almost everywhere in an open set in \mathfrak{D}, then $u=M$ almost everywhere in \mathfrak{D}.

This theorem for a weakly L-subharmonic function u was proved by Littman (Theorem 2 in [2]).
2. We prepare some lemmas. Consider the function

$$
\phi_{R_{0}}(R)= \begin{cases}0 & \text { for } R \leqq 0 \\ e^{-\frac{1}{R}} e^{-\frac{1}{R_{0}-R}} & \text { for } 0<R<R_{0} \\ 0 & \text { for } R_{0} \leqq R\end{cases}
$$

Clearly $\phi_{R_{0}}(R)$ is an infinitely differentiable function with compact carrier in $(-\infty, \infty)$.

Lemma 1. For an arbitrary positive integer h, there exists a positive number δ_{h} such that, if $0<R_{0}-R<\delta_{h}$,

$$
\phi_{R_{0}}^{(h)}(R)=(-1)^{h}\left|\phi_{R_{0}}^{(h)}(R)\right|,
$$

where $\phi_{R_{0}}^{(h)}(R)=\frac{d^{h}}{d R^{h}} \phi_{R_{0}}(R)$.
Proof. We prove the lemma by induction on h. Our lemma is obvious for $h=0$. Assume the assertion for $h=k$. We see easily that $\phi_{R_{0}}^{(k+1)}(R)$ can be written in the form

$$
\phi_{R_{0}}^{(k+1)}(R)=\frac{Q_{k}(R)}{P_{k}(R)} \phi_{R_{0}}(R)
$$

Here $P_{k}(R)$ and $Q_{k}(R)$ are both polynomials with respect to a variable
R. In addition $P_{k}(R)$ has no zero except $R=0$ and $R=R_{0}$. If we take a positive number $\delta\left(<\delta_{k}\right)$ sufficiently small, $Q_{k}(R)$ and $\phi_{R_{0}}^{(k+1)}(R)$ have a definite sign in $0<R_{0}-R<\delta$. And by the mean value theorem, we can find R^{\prime} such that

$$
\phi_{R_{0}}^{(k)}(R)=\left(R-R_{0}\right) \phi_{R_{0}}^{(k+1)}\left(R^{\prime}\right),\left(R<R^{\prime}<R_{0}, 0<R_{0}-R<\delta\right) .
$$

Since from our assumption the sign of the left hand side in this equality is $(-1)^{k}$ in $0<R_{0}-R<\delta_{k}$, the sign of $\phi_{R_{0}}^{(k+1)}\left(R^{\prime}\right)$ is $(-1)^{k+1}$. Hence, putting $\delta_{k+1}=\delta$, we obtain the required.

Hereafter, we assume that the origin 0 of R^{n} is in \mathfrak{D}. We put

$$
\begin{align*}
W(x)=\int_{r^{2}}^{\infty}\left(\frac{1}{r^{2 k}}-\frac{1}{R^{k}}\right) \phi_{R_{0}}(R) d R, & r=|x| \tag{2}\\
& =\sqrt{x_{1}^{2}+\cdots+x_{n}^{2}}
\end{align*}
$$

where k is positive and $\sqrt{R_{0}}(<1)$ is smaller than the distance of the boundary of \mathfrak{D} from the origin.

Lemma 2. Let L^{*} be the adjoint operator of L. Then there exists a constant k_{0} depending only on R_{0} and on L such that if $k \geqq k_{0}$, it holds that

$$
L^{*} W(x)>0 \quad \text { in } 0<R_{0}-r^{2}<\delta_{0},
$$

where $\delta_{0}=\operatorname{Min}_{0 \leq h \leq 2 s} \delta_{h}$ and $\delta_{h}(h=1,2, \cdots)$ are those in Lemma 1.
Proof. By putting $\rho=r^{2}$ and $f(\rho)=W(x)=\int_{\rho}^{\infty}\left(\frac{1}{\rho^{k}}-\frac{1}{R^{k}}\right) \phi_{F_{0}}(R)$ $d R$, we see

$$
\begin{equation*}
\frac{d}{d \rho} f(\rho)=\frac{-k}{\rho^{k+1}} \int_{\rho}^{\infty} \phi_{R_{0}}(R) d R \tag{3}
\end{equation*}
$$

Applying the Leibniz formula to (3), we have

$$
\begin{align*}
& \frac{d^{m}}{d \rho^{m}} f(\rho)= \sum_{l=0}^{m-1}\binom{m-1}{l}\left(\frac{d}{d \rho}\right)^{l}\left(\frac{-k}{\rho^{k+1}}\right)\left(\frac{d}{d \rho}\right)^{m-1-l} \int_{\rho}^{\infty} \phi_{F_{0}}(R) d R \\
&=\sum_{l=0}^{m-1}(m-1) \frac{(-1)^{l+1} k(k+1) \cdots(k+l)^{\rho}}{\rho^{k+l+1}}\left\{-\phi_{R_{0}}^{(m-2-l)}(\rho)\right\}, \tag{4}\\
& \quad(1 \leqq m \leqq 2 s),
\end{align*}
$$

where $\phi_{R_{0}}^{(-1)}(\rho)=-\int_{\rho}^{\infty} \phi_{R_{0}}(R) d R(\leqq 0)$. By Lemma 1, we have

$$
\begin{equation*}
\phi_{R 0}^{(m-2-l)}(\rho)=(-1)^{m-l}\left|\phi_{R_{0}}^{(m-2-l)}(\rho)\right|, \quad(0 \leqq m-2-l) \tag{5}
\end{equation*}
$$

in $0<R_{0}-\rho<\delta_{0}$. Substituting (5) into the right hand side of (4), we obtain

$$
\begin{equation*}
\frac{d^{m}}{d \rho^{m}} f(\rho)=(-1)^{m} \sum_{l=0}^{m-1}\binom{m-1}{l} \frac{k(k+1) \cdots(k+l)}{\rho^{k+l+1}}\left|\phi_{R_{0}}^{(m-2-l)}(\rho)\right|, \tag{6}
\end{equation*}
$$

$$
(1 \leqq m \leqq 2 s)
$$

Putting $m=2 s$ in (6), we get

$$
\begin{equation*}
\left|\frac{d^{2 s}}{d \rho^{2 s}} f(\rho)\right| \geqq \sum_{l=0}^{2 s-1} \frac{k(k+1) \cdots(k+l)}{\rho^{k+l+1}}\left|\phi_{R \rho}^{(2 s-2-l)}(\rho)\right|, \quad 0<R_{0}-\rho<\delta_{0} . \tag{7}
\end{equation*}
$$

And, in general,

$$
\begin{equation*}
\left|\frac{d^{m}}{d \rho^{m}} f(\rho)\right| \leqq A_{m} \sum_{l=0}^{m-1} \frac{k(k+1) \cdots(k+l)}{\rho^{k+l+1}}\left|\phi_{R 0}^{(m-2-l)}(\rho)\right|, \quad 0<R_{0}-\rho<\delta_{0} \tag{8}
\end{equation*}
$$

where A_{m} is a constant depending only on m.
Now computing $D^{\alpha} W(x)$ similarly as in [1], we have

$$
\begin{equation*}
D^{\alpha} W(x)=\sum_{q=1}^{|\alpha|} \alpha_{1}!\cdots \alpha_{n}!\frac{d^{q}}{d \rho^{q}} f(\rho) \cdot\left(\sum_{\substack{|\beta+\gamma|=\alpha \\ \beta+2 r=\alpha}} \frac{2^{|\beta|}}{\beta_{1}!\cdots \beta_{n}!\gamma_{1}!\cdots \gamma_{n}!} \cdot x_{1}^{\beta_{1}} \cdots x_{n}^{\beta_{n}}\right) \tag{9}
\end{equation*}
$$

By setting

$$
L^{*}=\sum_{|\alpha| \leqslant 2 s} b_{\alpha}(x) D^{\alpha},
$$

it holds that

$$
\begin{align*}
& L^{*} W(x)=\sum_{|\alpha|=2 s} b_{\alpha}(x) \alpha_{1}!\cdots \alpha_{n}!\frac{d^{|\alpha|}}{d \rho^{|\alpha|}} f(\rho) \cdot \frac{2^{|\alpha|}}{\alpha_{1}!\cdots \alpha_{n}!} \cdot x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}} \\
&+\sum_{|\alpha|=2 s} b_{\alpha}(x) \alpha_{1}!\cdots \alpha_{n}!\sum_{q=1}^{|\alpha|-1} \frac{d^{q}}{d \rho^{q}} f(\rho) \cdot\left(\sum_{\substack{|\beta+r|=\alpha \\
\beta+2 r=\alpha}} \frac{2^{|\beta|}}{\beta_{1}!\cdots \beta_{n}!\gamma_{1}!\cdots \gamma_{n}!} \cdot\right. \\
&+ \sum_{|\alpha| \leq 2 s-1} b_{\alpha}(x) \alpha_{1}!\cdots \alpha_{n}!\sum_{q=1}^{|\alpha|} \frac{d^{q}}{d \rho^{q}} f(\rho) \cdot\left(\sum_{\substack{|\beta+r|=\alpha \\
\beta+2 r=\alpha}} \frac{2^{|\beta|}}{\beta_{1}!\cdots x_{n}^{\beta n}!\gamma_{1}!\cdots \gamma_{n}!}\right) \tag{10}\\
&\left.x_{1}^{\beta_{1}} \cdots x_{n}^{\beta_{n}}\right) .
\end{align*}
$$

By ellipticity of L^{*}, there is a positive constant c such that, if $r^{2}=\rho \leqq R_{0}$,

$$
\begin{equation*}
\sum_{|\alpha|=2 s} b_{\alpha}(x) x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}} \geqq c r^{2 s} . \tag{11}
\end{equation*}
$$

Substituting (11) into the first term on the right hand side of (10), we see, in $0<R_{0}-\delta_{0}<\rho$,

$$
\begin{aligned}
L^{*} W(x) & \geqq 2^{2 s} c \frac{d^{2 s}}{d \rho^{2 s}} f(\rho) r^{2 s} \\
& -M_{1}(2 s+1)^{n}(2 s)!\sum_{q=s}^{2 s-1} \frac{d^{q}}{d \rho^{q}} f(\rho) \cdot \frac{(2 n)^{2 q-2 s}}{(2 q-2 s)!} r^{2 q-2 s} \\
& -M_{|\alpha| \sum_{2 s-1}}(|\alpha|+1)^{n}|\alpha|!\sum_{q=\left[\frac{\sum_{2}}{2}\right]+1}^{\mid \alpha,} \frac{d^{q}}{d \rho^{q}} f(\rho) \cdot \frac{(2 n)^{2 q-|\alpha|}}{(2 q-|\alpha|)!} r^{2 q-|\alpha|},
\end{aligned}
$$

where $M_{1}=\sup _{|\alpha|=2 s}\left|b_{\alpha}(x)\right|$ and $M_{2}=\sup _{|\alpha| \leq 2 s-1}\left|b_{\alpha}(x)\right|$. If we put $B_{0}=2^{2 s} c$, $B_{m}=M_{1}(2 s+1)^{n}(2 s)!\frac{(2 n)^{2 m-2 s}}{(2 m-2 s)!} A_{m}$ and $B_{\alpha, q}=M_{2}(|\alpha|+1)^{n}|\alpha|!\frac{(2 n)^{2 q-|\alpha|}}{(2 q-|\alpha|)!}$. A_{q}, then from (7) and (8), we have

$$
\begin{aligned}
L^{*} W(x) & \geqq B_{0}\left(\sum_{l=0}^{2 s-1} \frac{k(k+1) \cdots(k+l)}{\rho^{k+l+1-s}}\left|\phi^{(2 s-l-2)}(\rho)\right|\right) \\
& -\sum_{q=s}^{2 s-1} B_{q}\left(\sum_{l^{\prime}=0}^{q-1} \frac{k(k+1) \cdots\left(k+l^{\prime}\right)}{\left.\rho^{k+l^{\prime+1-q+s}}\left|\phi^{\left(q-l^{\prime}-2\right)}(\rho)\right|\right)}\right. \\
& -\sum_{|\alpha| \leqq 2 s-1} \sum_{q=\left[\frac{|\alpha|}{2}\right]}^{|\alpha|} B_{\alpha, q}\left(\left.\sum_{l^{\prime \prime}=0}^{q-1} \frac{k(k+1) \cdots\left(k+l^{\prime \prime}\right)}{\rho^{k+l^{\prime \prime}+1-q+\frac{|\alpha|}{2}}} \phi^{\left(q-l^{\prime \prime-2}-2\right)}(\rho) \right\rvert\,\right),
\end{aligned}
$$

in $0<R_{0}-\delta_{0}<\rho$. On the right hand side of this inequality we com-
pare the coefficient of $\left|\phi^{(2 s-l-2)}\right|$ in the first sum with the coefficient of $\left|\phi^{\left(q-l^{\prime \prime}-2\right)}\right|$ in the third sum. If $2 s-l-2=q-l^{\prime \prime}-2$, then $k+l>k+l^{\prime \prime}$ and $k+l+1-s>k+l^{\prime \prime}+1-q+\frac{|\alpha|}{2}$. Therefore, we can take k_{0}^{\prime} such that, when $k \geqq k_{0}^{\prime}$

$$
\begin{align*}
& L^{*} W(x) \geqq \frac{B_{0}}{2}\left(\sum_{l=0}^{2 s-1} \frac{k(k+1) \cdots(k+l)}{\rho^{k+l+1-s}}\left|\phi^{(2 s-l-2)}(\rho)\right|\right. \\
&- \sum_{q=s}^{2 s-1} B_{q}\left(\sum_{l^{\prime}=0}^{q-1} \frac{k(k+1) \cdots\left(k+l^{\prime}\right)}{\rho^{k+l^{\prime}+1-q+s}}\left|\phi^{\left(q-l^{\prime}-2\right)}(\rho)\right|\right), \tag{12}\\
& \quad\left(0<R_{0}-\delta_{0}<\rho\right) .
\end{align*}
$$

In the same manner as above, we compare the first sum with the second sum on the right hand side of (12). Let $2 s-l-2=q-l^{\prime}-2$, then $k+l+1-s=k+l^{\prime}+1-q+s$ and $k+l>k+l^{\prime}$. Hence we can take suitably k_{0} for which our lemma holds.
3. Proof of the theorem. Denote by S the maximal open set in which $u=M$ almost everywhere. We assume that $S \neq \mathfrak{D}$. As is easily seen, if we take R_{0} sufficiently small, there exist concentric spheres E_{1} and E_{2} satisfying the conditions:
i) the radius of E_{2} and the radius of E_{1} are $\sqrt{R_{0}}$ and $\sqrt{R_{0}-\delta_{0}}$ respectively (δ_{0} is that in Lemma 2).
ii) E_{1} lies in S and \bar{E}_{2} lies in \mathfrak{D}.
iii) $\quad \bar{E}_{1}$ contains boundary point P of S which belongs to \mathfrak{D}.

We may assume that the center of E_{1} is the origin. We construct a non-negative infinitely differentiable function $w(x)$ which equals $W(x)$ in E_{1}^{c}. Since u is a weak L-subsolusion in \mathfrak{D}, it holds

$$
\begin{equation*}
0 \geqq \int_{\mathcal{D}}(M-u) L^{*} w d x \tag{13}
\end{equation*}
$$

On the other hand we have

$$
\begin{align*}
& \int_{\mathcal{D}}(M-u) L^{*} w d x=\int_{S^{\prime}}(M-u) L^{*} w d x \\
& \quad+\int_{S}(M-u) L^{*} w d x+\int_{\mathcal{D}-\left(S^{\cup} S^{\prime}\right)}(M-u) L^{*} w d x, \tag{14}
\end{align*}
$$

where $S^{\prime}=S^{c} \frown E_{2}$. On the right hand side of (14), the second term vanishes and the last term also vanishes, as $w=W=0$ in E_{2}^{c}. Hence from (13), we have

$$
0 \geqq \int_{s^{\prime}}(M-u) L^{*} w d x=\int_{s^{\prime}}(M-u) L^{*} W d x .
$$

This inequality implies $M-u=0$ almost everywhere in $E_{2}-E_{1}$. That is, $u=M$ almost everywhere in a neighborhood of P, which is a contradiction. Hence S is identical with \mathfrak{D}. Thus our theorem is proved.

References

[1] K. Hayashida: Unique continuation theorem of elliptic systems of partial differential equations, Proc. Japan Acad., 38, 630-635 (1962).
[2] W. Littman: A strong maximum principle for weakly L-subharmonic functions, Journ. of Math. Mech., 8, 761-770 (1959).

