64. On a Special Metric Characterizing a Metric Space of dim $\leqq n$

By Jun-iti Nagata
Department of Mathematics, Osaka City University (Comm. by Kinjirô Kunugi, m.J.A., May 11, 1963)

Once we have characterized [3] a metric space of covering dimension $\leqq n$ by means of a special metric as follows.

A metric space R has dim $\leqq n$ if and only if we can introduce a metric ρ in R which satisfies the following condition: For every $\varepsilon>0$ and for every $n+3$ points $x, y_{1}, \cdots, y_{n+2}$ in R satisfying ${ }^{1)}$

$$
\rho\left(S_{\varepsilon / 2}(x), y_{i}\right)<\varepsilon, \quad i=1, \cdots, n+2,
$$

there is a pair of indices i, j such that

$$
\rho\left(y_{i}, y_{j}\right)<\varepsilon \quad(i \neq j)
$$

For separable metric spaces, this theorem was simplified by J. de Groot [2] as follows.

A separable metric space R has dim@n if and only if we can introduce a totally bounded metric ρ in R which satisfies the following condition:

For every $n+3$ points $x, y_{1}, \cdots, y_{n+2}$ in R, there is a triplet of indices, i, j, k such that

$$
\rho\left(y_{i}, y_{j}\right) \leqq \rho\left(x, y_{k}\right) \quad(i \neq j)
$$

The first theorem is not so smart though it is valid for every metric space. The problem of generalizing the second theorem, omitting the condition of totally boundedness, to general metric spaces still remains unanswered. However, we can characterize the dimension of a general metric space by a metric satisfying a stronger condition as follows.

Theorem. A metric space R has dim $\leqq n$ if and only if we can introduce a metric ρ into R which satifises the following condition:

For every $n+3$ points $x, y_{1}, \cdots y_{n+2}$ in R, there is a pair of indices, i, j such that

$$
\rho\left(y_{i}, y_{j}\right) \leqq \rho\left(x, y_{j}\right) \quad(i \neq j)
$$

Proof. The proof of this theorem is never simple. ${ }^{2)}$ Here we shall only show the proof of sufficiency and the outline of the proof of necessity.

Sufficiency. We shall prove that the following weaker condition is sufficient for R to have $\operatorname{dim} \leqq n$.

We can introduce a metric ρ into R such that for a definite

1) $S_{\varepsilon / 2}(x)=\{y \mid \rho(x, y)<\varepsilon / 2\}$.
2) The detailed proof will be published in some other place.
number $\delta>0$ and for every $n+3$ points $x, y_{1}, \cdots, y_{n+2}$ in R with $\rho\left(x, y_{j}\right)<\delta, j=1, \cdots, n+2$, there is a pair of indices i, j such that

$$
\rho\left(y_{i}, y_{j}\right) \leqq \rho\left(x, y_{j}\right) \quad(i \neq j)
$$

For $n=0$, the condition for ρ implies that we can introduce a non-Archimedean metric into R. Hence by de Groot's theorem [1] R has $\operatorname{dim} \leqq 0$. To prove our assertion by induction we assume its validity and suppose ρ is a metric satisfying the condition for $\delta>0$ and for every $n+4$ points $x, y_{1}, \cdots y_{n+3}$ in R. Let F be a given closed set of R; then for an arbitrary positive number $\varepsilon<\delta$, we consider the open neighborhood

$$
S_{\varepsilon}(F)=\smile_{\left\{S_{\varepsilon}(y) \mid y \in F\right\}}
$$

of F. To assert $\operatorname{dim} R \leqq n+1$ it suffices to show

$$
\operatorname{dim} B S_{s}(F) \leqq n
$$

where $B S_{s}(F)$ denotes the boundary of $S_{s}(F)$. If we denied the assertion, then by the inductive assumption there would be $n+3$ points $x, y_{1}, \cdots y_{n+2}$ in $B S_{s}(F)$ such that

$$
\rho\left(x, y_{j}\right)<\varepsilon, \rho\left(y_{i}, y_{j}\right)>\rho\left(x, y_{j}\right)
$$

for every pair i, j with $i \neq j$. We choose a small neighborhood $U(x)$ of x such that for every point x^{\prime} of $U(x), \rho\left(x^{\prime}, y_{j}\right)<\varepsilon$ and $\rho\left(y_{i}, y_{j}\right)$ $>\rho\left(x^{\prime}, y_{j}\right)$ hold. Then there exists a point y_{n+3} of F satisfying $S_{\varepsilon}\left(y_{n+3}\right) \frown U(x) \neq \phi$. Take a point $x^{\prime} \in S_{\varepsilon}\left(y_{n+8}\right) \frown U(x)$; then

$$
\begin{aligned}
& \rho\left(x^{\prime}, y_{j}\right)<\varepsilon<\delta, \quad j=1, \cdots, n+3 \\
& \rho\left(y_{i}, y_{j}\right)>\rho\left(x^{\prime}, y_{j}\right), \quad i \neq j, \quad 1 \leqq i, j \leqq n+2 \\
& \rho\left(y_{i}, y_{n+3}\right) \geqq \varepsilon>\rho\left(x^{\prime}, y_{n+3}\right), \quad i=1, \cdots, n+2 \\
& \rho\left(y_{n+3}, y_{j}\right) \geqq \varepsilon>\rho\left(x^{\prime}, y_{j}\right), \quad j=1, \cdots, n+2
\end{aligned}
$$

But this contradicts the property of ρ. Therefore we can conclude that

$$
\operatorname{dim} B S_{\bullet}(F) \leqq n
$$

and accordingly

$$
\operatorname{dim} R \leqq n+1
$$

To carry out the proof of necessity we need the following terminology which is a slight modification of the concept 'rank' of a collection of sets established in [5] or [6].

Definition. Let \subseteq be a collection of subsets of R. We call the Rank of \mathfrak{S} not greater than n and denote it by Rank $\mathfrak{S} \leqq n$ if \mathfrak{S} has the following property.

If $U_{1}, \cdots, U_{l} \in \subseteq, \bar{U}_{1} \frown \cdots \frown \bar{U}_{l} \neq \phi, U_{i} \nsubseteq U_{j}$ for every pair i, j, with $i \neq j$, then $l \leqq n$.

Necessity. The point of the proof is to define a sequence (1) $\mathfrak{B}_{1}>\mathfrak{N}_{2}{ }^{* *}>\mathfrak{B}_{2}>\mathfrak{B}_{3}{ }^{* *}>\ldots$
of locally finite open coverings such that
(2) mesh $\mathfrak{B}_{m}=\sup \left\{\delta(V) \mid V \in \mathfrak{B}_{m}\right\}<1 / m$
and a locally finite open covering $\mathbb{S}_{m_{1} \cdots m_{p}}^{\prime}$ for each sequence m_{1}, \cdots, m_{p} of integers with $1 \leqq m_{1}<m_{2}<\cdots<m_{p}$ such that
(3) $\mathfrak{S}_{m}^{\prime}=\mathfrak{B}_{m}$
(4) if $2^{-m_{1}}+\cdots+2^{-m_{p}}>2^{-l_{1}}+\cdots+2^{-l_{q}}$, then $\mathbb{S}_{m_{1} \cdots m_{p}}^{\prime}>\mathbb{S}_{l_{1}}^{\prime} \cdots \boldsymbol{l}_{q}$,

Let us decompose R by the decomposition theorem as $R=\bigcup_{i=1}^{n+1} A_{i}$ for 0 -dimensional spaces $A_{i}, i=1, \cdots, n+1$. Now, we shall define $\mathfrak{B}_{1}, \mathfrak{B}_{2}, \cdots, \mathfrak{B}_{m}$ and $\left\{\mathbb{S}_{m_{1} \cdots m_{p}}^{\prime} \mid 1 \leqq m_{1}<\cdots<m_{p} \leqq m\right\}$ satisfying the following conditions besides (1), (2), (3), and (4): If we put, for brevity, $\left\{\mathbb{S}_{m_{1}}^{\prime} \cdots m_{p} \mid 1 \leqq m_{1}<\cdots<m_{p} \leqq m\right\}=\left\{\mathbb{S}_{1}, \cdots, \mathbb{S}_{k(m)}\right\}$, then
(6) $U, U^{\prime} \in \mathbb{S}_{i}$ implies either $U \nsubseteq U^{\prime}$ or, $U=U^{\prime}$
(7) $U, U^{\prime} \in \Im_{1} \smile \ldots \smile \mathbb{S}_{k(m)}$ and $U \subsetneq U^{\prime}$ imply $\bar{U} \subset U^{\prime}$,
(8) Rank $\mathfrak{S}_{1} \smile \ldots \smile \mathbb{S}_{k(m)} \leqq n+1$,
(9) $\operatorname{ord}_{p} B\left(\mathfrak{S}_{1} \smile \ldots \smile^{(} \mathfrak{S}_{k(m)}\right) \leqq i-1$ for $p \in A_{i}$,
where for a collection \mathfrak{S} of subsets and a point p of $R, B(\mathbb{S})$ denotes the collection ${ }^{3)}\{B(U) \mid U \in \mathbb{S}\}$ and $\operatorname{ord}_{p} \mathbb{S}$ denotes the greatest number of the members of \mathbb{S} which contain p.

For $m=1$, we construct a locally finite open covering $\mathfrak{Y}_{1}^{\prime}$ $=\left\{V_{\alpha}^{\prime} \mid \alpha \in A_{1}\right\}$ with ord $\overline{\mathfrak{W}}_{1}^{\prime} \leqq n+1$, mesh $\mathfrak{Y}_{1}^{\prime}<1$, where for a collection \mathfrak{B} of subsets, $\overline{\mathfrak{B}}$ denotes the collection $\{\bar{V} \mid V \in \mathfrak{V}\}$. Then there is an open covering $\mathfrak{V}_{1}^{\prime \prime}=\left\{V_{\alpha}^{\prime \prime} \mid \alpha \in A_{1}\right\}$ for which $\bar{V}_{\alpha}^{\prime \prime} \subset V_{\alpha}^{\prime}$. Then, as we have shown in [4], Lemma 2.1, we can construct open sets $V_{\alpha}^{\prime \prime \prime}, \alpha \in A_{1}$ such that

$$
\bar{V}_{\alpha}^{\prime \prime} \subset V_{\alpha}^{\prime \prime \prime} \subset V_{\alpha}^{\prime}
$$

$$
\operatorname{ord}_{p}\left\{B\left(V_{\alpha}^{\prime \prime \prime}\right) \mid \alpha \in A_{1}\right\} \leqq i-1 \quad \text { for } \quad p \in A_{i} .
$$

We choose from $\left\{V_{\alpha}^{\prime \prime \prime} \mid \alpha \in A_{1}\right\}$ the members $V_{\alpha}^{\prime \prime \prime}$ for which $V_{\alpha}^{\prime \prime \prime} \subset V_{\beta}^{\prime \prime \prime}$ ($\beta \in A_{1}$) implies $V_{\alpha}^{\prime \prime \prime}=V_{\beta}^{\prime \prime \prime}$ and make a collection \mathfrak{B}_{1} out of them. Then it is easy to see that $\mathfrak{B}_{1}=\mathfrak{S}_{1}^{\prime}$ is the locally finite open covering satisfying all the required conditions.

Now, let us assume that we have already defined $\mathfrak{B}_{1}, \cdots, \mathfrak{F}_{m}$ and $\mathfrak{S}_{1}, \cdots, \mathfrak{S}_{k(m)}$ to define \mathfrak{B}_{m+1} and $\left\{\mathbb{S}_{k(m)+1}, \cdots, \mathbb{S}_{k(m+1)}\right\}=\left\{\mathbb{S}_{m_{1} \cdots m_{p}}^{\prime} \mid 1 \leqq m_{1}\right.$ $\left.<\cdots<m_{p}=m+1\right\}$. First we construct a locally finite open covering \mathfrak{B} with mesh $\mathfrak{B}<1 /(m+1), \mathfrak{B}^{* *}<\mathfrak{B}_{m}$ such that
(10) if $U_{1}, \cdots, U_{l} \in \Im_{1} \smile \ldots \mathfrak{S}_{k(m)}$ and $\bar{U}_{1 \frown} \cdots \frown \bar{U}_{l}=\phi$, then

$$
S^{3}\left(U_{1}, \mathfrak{B}\right) \frown \cdots \frown S^{3}\left(U_{l}, \mathfrak{B}\right)=\phi,
$$

(11) for each $p \in R, S^{3}(p, \mathfrak{V})$ meets only finitely many members of $\mathfrak{S}_{1} \smile \ldots \smile^{\mathbb{S}_{k(m)}}$.
(12) if $U, U^{\prime} \in \mathbb{S}_{1} \smile \ldots \smile \mathfrak{S}_{k(m)}$ and $\bar{U} \subset U^{\prime}$, then $\overline{S^{2}(U, \mathfrak{B})} \subset U^{\prime}$
(13) if $U, U^{\prime} \in \mathbb{S}_{1} \smile \ldots \mathfrak{S}_{k(m)}$ and $\bar{U} \perp U^{\prime}$, then $S^{2}(U, \mathfrak{B}) \perp U^{\prime}$.

[^0]Since $\mathfrak{S}_{1} \smile \ldots \smile \mathfrak{S}_{k(m)}$ is locally finite, we can choose such \mathfrak{B}. Let $\mathfrak{B}=\left\{V_{\alpha} \mid \alpha \in A\right\}$, then we construct an open covering $\mathfrak{W}^{\prime}=\left\{W_{\alpha}^{\prime} \mid \alpha \in A\right\}$ satisfying $\bar{W}_{\alpha}^{\prime} \subset V_{\alpha}$. Since each $S\left(V_{\alpha}, \mathfrak{F}\right)$ meets at most finitely many of $U \in \mathbb{S}_{1} \smile \ldots \smile \mathbb{S}_{k(m)}$, for each of those U we can define an open set $V_{\alpha}(U)$ such that

$$
\begin{equation*}
\bar{W}_{\alpha}^{\prime} \subset V_{\alpha}(U) \subset \overline{V_{\alpha}(U)} \subset V_{\alpha} \tag{14}
\end{equation*}
$$

$$
\begin{equation*}
\text { if } U \neq U^{\prime} \text {, then either } \overline{V_{\alpha}(U)} \subset V_{\alpha}\left(U^{\prime}\right) \text { or } \overline{V_{\alpha}\left(U^{\prime}\right)} \subset V_{\alpha}(U) \tag{15}
\end{equation*}
$$

(16) if $U \in \mathbb{S}_{m_{1} \cdots m_{p}}^{\prime}, U^{\prime} \in \mathbb{S}_{l_{1} \cdots l_{q}}^{\prime}, 2^{-m_{1}}+\cdots+2^{-m_{p}}<2^{-l_{1}}+\cdots+2^{-l_{q}}$, then $\overline{V_{\alpha}(U)} \subset V_{\alpha}\left(U^{\prime}\right)$.
By virtue of (9) we can choose $V_{\alpha}(U)$ satisfying ${ }^{4)}$
(17) $\operatorname{ord}_{p} B\left(\mathbb{S}_{1} \smile \ldots \smile \mathbb{S}_{k(m)} \smile \mathfrak{V}^{\prime}\right) \leqq i-1$ for $p \in A_{i}$,
too, where $\mathfrak{V}^{\prime}=\left\{V_{\alpha}(U) \mid \alpha \in A, U \in \mathbb{S}_{1} \smile \ldots \smile_{\mathbb{S}_{k(m)}}\right\}$. Suppose $S_{m_{1} \cdots m_{p}}(V)$
$=U$ is a member of $\mathfrak{S}_{1} \smile \ldots \smile \mathbb{S}_{k(m)}$; then we put

$$
\begin{aligned}
& S_{m_{1} \cdots m_{p} m+1}(V)=\smile\left\{V_{\alpha}(U) \mid \alpha \in A, S\left(V_{\alpha}, \mathfrak{F}\right) \frown U \neq \phi\right\}, \\
& \mathbb{S}_{m_{1} \cdots m_{p} m+1}^{\prime}=\left\{S_{m_{1} \cdots m_{p} m+1}(V) \mid V \in \mathfrak{B}_{m_{1}}\right\} .
\end{aligned}
$$

By (11) $\mathbb{S}_{m_{1} \cdots m_{p} m+1}^{\prime}$ is a locally finite open covering.
(18) We choose only those members of $\mathbb{S}_{m_{1} \ldots m_{p} m_{+1}}^{\prime}$ which are not contained in any other member and denote the collection of those members also by $\mathbb{S}_{m_{1} \cdots m_{p} m+1}^{\prime}$. Adding these locally finite open coverings $\mathbb{S}_{m_{1} \cdots m_{p} m+1}^{\prime}, 1 \leqq m_{1}<\cdots<m_{p} \leqq m$ to the collection $\sum=\left\{\mathbb{S}_{1}, \cdots, \mathbb{S}_{k(m)}\right\}$, we obtain a new collection $\sum^{\prime}=\left\{\mathbb{S}_{1}, \cdots, \mathfrak{S}_{k(m)}, \mathfrak{S}_{k(m)+1}, \cdots, \mathfrak{S}_{k(m+1)-1}\right\}$. Then we can see that this collection Σ^{\prime} of coverings satisfies the conditions (6), (7), (8), and (9). We shall omit the proof in detail, but only notice that the conditions (10), (12), (13), (14), (15), (16), (17), (18) and (4), (6), (7), (8) for \sum are needed for that purpose.

Finally we shall define $\mathfrak{B}_{m+1}=\mathfrak{S}_{m+1}^{\prime}=\mathbb{S}_{k(m+1)}$. For the preceding covering \mathfrak{W}^{\prime} we construct a locally finite open covering \mathfrak{W} such that $\mathfrak{W}<\mathfrak{W}^{\prime}$,
(19)

$$
\operatorname{Rank} \mathfrak{S}_{1} \smile \ldots \smile \mathbb{S}_{k(m+1)-1} \smile \mathfrak{M} \leqq n+1
$$

Since Σ^{\prime} satisfies (8) and (9), such a covering \mathfrak{W} can be constructed by a slight modification of the process used in [6], proof of Theorem 2.

Let W be a given member of $\mathfrak{3}$. For every member U of $\mathfrak{S}_{1} \smile \ldots \smile \mathfrak{S}_{k(m+1)-1}$ such that $U \neq W, U \frown W \neq \phi$, we assign a point $q(W, U) \in W-U$. Then $F(W)=\smile\left\{q(W, U) \mid U \neq W, U \frown W \neq \phi, U \in \mathbb{S}_{1} \smile\right.$ $\left.\ldots \smile \mathfrak{S}_{k(m+1)-1}\right\}$ is a closed set contained in W, because W meets only finitely many members of $\mathfrak{S}_{1} \smile \ldots \smile \mathbb{S}_{k(m+1)-1}$. Hence by use of (9) for Σ^{\prime}, we can construct an open set $V(W)$ for every $W \in \mathfrak{B}$ such that ${ }^{5)}$

$$
\begin{gathered}
F(W) \subset V(W) \subset \overline{V(W) \subset W,} \\
\operatorname{ord}_{p} \mathfrak{S}_{1} \smile \ldots \smile \mathbb{S}_{k(m+1)-1} \smile\{B V(W) \mid W \in \mathfrak{W}\} \leqq i-1 \text { for } p \in A_{i} .
\end{gathered}
$$

[^1]Put

$$
\begin{aligned}
\mathfrak{B}_{m+1}= & \mathfrak{S}_{m+1}^{\prime}=\mathfrak{S}_{k(m+1)}=\left\{V(W) \mid W \in \mathfrak{R} ; V(W) \subset V\left(W_{0}\right)\right. \\
& \text { and } \left.W_{0} \in \mathfrak{M} \text { imply } V(W)=V\left(W_{0}\right)\right\} .
\end{aligned}
$$

Then it is easy to see from (6), (7) for Σ^{\prime} and (19) that $\Sigma^{\prime \prime}=\left\{\Theta_{1}, \cdots\right.$, $\left.\mathfrak{S}_{k(m+1)}\right\}$ also satisfies (6), (7), (8), and (9). Thus we have defined \mathfrak{B}_{m}, $m=1,2, \cdots$ and $\mathbb{S}_{m_{1} \cdots m_{p}}, 1 \leqq m_{1}<\cdots<m_{p}$ which satisfy (1)-(5).

We now introduce a metric ρ into R by use of the coverings $\mathbb{S}_{m_{1} \cdots m_{p}}^{\prime}, 1 \leqq m_{1}<\cdots<m_{p}$ and $\mathfrak{S}_{0}^{\prime}=\{R\}$ as follows:

$$
\rho(x, y)=\inf \left\{2^{-m_{1}}+\cdots+2^{-m_{p}} \mid y \in S\left(x, \mathbb{S}_{m_{1} \cdots m_{p}}^{\prime}\right)\right\}
$$

The proof that ρ is a metric is a slight modification of the proof of Theorem 5 in [3]. For that proof we need, besides the structure of $S_{m_{1} \cdots m_{p}}(V)$, the conditions (1), (2), (3), (4), and (16). Here we shall only prove that the metric ρ satisfies the desired special condition. Let $x, y_{1}, \cdots, y_{n+2}$ be given $\mathrm{n}+3$ points in R. For every $\varepsilon>0$ we obtain $m_{1}^{j}, \cdots, m_{p(j)}^{j}, j=1, \cdots, n+2$ such that

$$
\rho\left(x, y_{j}\right) \leqq 2^{-m_{1}^{j}}+\cdots+2^{-m_{p(j)}^{j}}<\rho\left(x, y_{j}\right)+\varepsilon
$$

and $U_{j} \in \mathbb{S}_{m_{1}^{j} \cdots m_{p(j)}^{j}}^{\prime j}$ such that $x, y_{j} \in U_{j}$.
If follows from (5) that there exist U_{i} and $U_{j}(i \neq j)$ such that $U_{i} \subset U_{j}$. Therefore

$$
\rho\left(y_{i}, y_{j}\right) \leqq 2^{-m_{1}^{j}}+\cdots+2^{-m_{p(j)}^{j}}<\rho\left(x, y_{j}\right)+\varepsilon .
$$

We take a pair i, j satisfying

$$
\rho\left(y_{i}, y_{j}\right)<\rho\left(x, y_{j}\right)+\varepsilon_{m}
$$

for a sequence $\left\{\varepsilon_{m}\right\}$ of positive numbers converging to zero. Then we obtain $\rho\left(y_{i}, y_{j}\right) \leqq \rho\left(x, y_{j}\right)$, proving the necessity. Thus among the conditions (6), (7), (8), (9) for $\mathfrak{S}_{1}, \cdots, \mathfrak{S}_{k(m)}$ (8) is essential. The other conditions are needed only to continue the inductive argument.

References

[1] J. de Groot: Non-archimedean metrics in topology, Proc. Amer. Math. Soc., 7, 948-953 (1956).
[2] _-: On a metric that characterizes dimension, Canad. J. Math., 9, 511-514 (1957).
[3] J. Nagata: Note on dimension theory for metric spaces, Fund. Math., 45, 143181 (1958).
[4] -: On the countable sum of zero-dimensional metric spaces, Fund. Math., 48, 1-14 (1960).
[5] -: On dimension and metrization, Proceedings of Symposium in Prague, 282285 (1961).
[6] -_: Two theorems for the n-dimensionality of metric spaces, to appear in Compositio Mathematica.

[^0]: 3) We often call a collection of subsets a collection. $B(U)$ denotes the boundary of U.
[^1]: 4) See [4], Lemma 2.1.
 5) See [4], Lemma 2.1.
