79. A Characteristic Property of L_{ρ}-Spaces ($\rho \geqq 1$). III

By Kôji Honda
Muroran Institute of Technology
(Comm. by Kinjirô Kunugi, m.J.A., June 12, 1963)

The aim of this paper is to give a characterization of the abstract L_{ρ}-space ${ }^{1)}(\rho \geqq 1)$ in terms of the norm.

Through this paper, let \boldsymbol{R} be a Banach lattice with a continuous semi-order. ${ }^{2)}$
\boldsymbol{R} is called the abstract L_{ρ}-space, if the norm satisfies the following condition:
(L_{ρ}) $\quad\|x+y\|^{\rho}=\|x\|^{\rho}+\|y\|^{\rho} \quad$ for every $\quad|x| \frown|y|=0, x, y \in \boldsymbol{R}$.
When we consider the case which the norm has the restricted Gateaux's differential i.e.,

$$
\begin{equation*}
G(x ;[p] x)=\lim _{\epsilon \rightarrow 0} \frac{\|x+\varepsilon[p] x\|-\|x\|}{\varepsilon} \tag{RG}
\end{equation*}
$$

exists for each $\|x\| \leqq 1$ and each projector $[p],{ }^{3>}$ it is easily seen that for numbers α, β and projectors [$p],[q]$
(1) $\quad G(x ; \alpha[p] x+\beta[p] y)=\alpha G(x ;[p] x)+\beta G(x ;[q] x)$
if the right side has a sense.
Used the condition (RG), our characterization is described in the following form.

Theorem. Suppose that \boldsymbol{R} is at least three dimensional space. In order that \boldsymbol{R} is the abstract L_{ρ}-space for some $\rho \geqq 1$, it is necessary and sufficient that the norm on \boldsymbol{R} satisfies the conditions (RG) and
(*) $\quad G(a+x ; a)=G(a+y ; a)$
for every $a \frown x=a \frown y=0$ and $\|a+x\|=\|a+y\|=1$.
Remark. It is known that the Gateaux's differential produces the equality in the Hölder's inequality. In this sense, our theorem is closely related to the previous paper [4 and 5], especially, if the conjugately similar transformation \boldsymbol{T} preserves the norm then $\|a+x\|$ $=\|a+y\|=1$ and $a \frown x=a \frown y=0$ imply

$$
G(a+x ; a)=\frac{(a, \boldsymbol{T}(a+x))}{\|\boldsymbol{T}(a+x)\|}=\frac{(a, \boldsymbol{T} a)}{\|\boldsymbol{T}(a+x)\|}=\frac{(a, \boldsymbol{T}(a+y))}{\|\boldsymbol{T}(a+y)\|}=G(a+y ; a)
$$

because for $\|x\|=1$ we have $(x, \boldsymbol{T} x)=\|\boldsymbol{T} x\|$ and hence $G(x ;[p] x)$

1) See [3: p. 312]. The braquet [•] denotes the number of the reference in the last.
2) A semi-order is said to be continuous, if for any $x_{\nu} \downarrow_{\nu=1}^{\infty}$ and $0 \leqq x_{\nu} \in \boldsymbol{R}$ there exists x such that $x_{\nu} \psi_{\nu=1}^{\infty} x$.
3) For any $p \in \boldsymbol{R},[p] x=\bigcup_{n=1}^{\infty}\left(|p| \cap n x^{+}\right)-\bigcup_{n=1}^{\infty}\left(|p| \frown n x^{-}\right)$where $x^{+}=x \cup_{0}$ and $x^{-}=(-x)^{+}$.
$=([p] x, \boldsymbol{T} x /\|\boldsymbol{T} x\|){ }^{4} \quad$ Therefore, Theorem includes the result in the paper [5].

To prove this theorem, we shall study the indicatrix of \boldsymbol{R}. In two-dimensional Euclidean space, the curve C is called the indicatrix ${ }^{5}$ if it satisfies the following conditions:

1) C is symmetric in respect to the axices,
2) C passes through the four points $(1,0),(0,1),(1,0)$ and $(0,1)$,
3) C is the convex continuous curve.

Particularly, the curve $C(a, b)$:

$$
\{(\xi, \eta) ;\|\xi a+\eta b\|=1\} \text { for } a \frown b=0 \text { and }\|a\|=\|b\|=1
$$

is called the indicatrix of \boldsymbol{R}.
Lemma 1.6) Suppose that \boldsymbol{R} has at least three elements a, b, c which are mutually orthogonal and $\|a\|=\|b\|=\|c\|=1$. If \boldsymbol{R} has only one indicatrix of \boldsymbol{R}, then either the indicatrix C of \boldsymbol{R} is

$$
|\xi|^{\rho}+|\eta|^{\rho}=1 \quad \text { for some } \rho \geqq 1
$$

or

$$
\operatorname{Max}\{|\xi|,|\eta|\}=1
$$

Lemma 2. When \boldsymbol{R} satisfies the condition (RG), the function $\eta=\eta(\xi)$ which is defined by the indicatrix:

$$
\|\xi a+\eta b\|=1 \quad(a \frown b=0,\|a\|=\|b\|=1 \text { and } \xi, \eta \geqq 0)
$$

is differentiable and non-increasing in $0 \leqq \xi<1$. (Here, the derivative at $\xi=0$ means the right derivative at $\xi=0$.)

Proof. The function $\eta=\eta(\xi)$ which is defined by the indicatrix in $0 \leqq \xi, \eta$, is a one-valued concave continuous function in $0 \leqq \xi<1$. Since the concave function has one-side derivatives $D^{ \pm} \eta(\xi)$, putting $D^{+} \eta\left(\xi_{0}\right)=A$ for a fixed point $0<\xi_{0}<1$, we have for any $\varepsilon>0\left(\xi_{0}+\varepsilon<1\right)$

$$
\begin{align*}
\eta\left(\xi_{0}+\varepsilon\right)= & \eta_{0}+\varepsilon(A+h(\varepsilon)),\left(\eta_{0}=\eta\left(\xi_{0}\right)\right), \tag{2}\\
& \lim _{\varepsilon \rightarrow+0} h(\varepsilon)=0
\end{align*}
$$

and hence

$$
0=\left\|\left(\xi_{0}+\varepsilon\right) a+\eta\left(\xi_{0}+\varepsilon\right) b\right\|-1=\left\|\left(\xi_{0} a+\eta_{0} b\right)+\varepsilon(a+A b+h(\varepsilon) b)\right\|-1 .
$$

By the triangle inequality on the norm, we have

$$
\begin{aligned}
0 & =\lim _{\varepsilon \rightarrow+0} \frac{1}{\varepsilon}\left\{\left\|\left(\xi_{0} a+\eta_{0} b\right)+\varepsilon(a+A b+h(\varepsilon) b)\right\|-1\right\} \\
& \leqq \lim _{\varepsilon \rightarrow+0} \frac{1}{\varepsilon}\left\{\left\|\left(\xi_{0} a+\eta_{0} b\right)+\varepsilon(a+A b)\right\|-1\right\} \\
& =G\left(\xi_{0} a+\eta_{0} b ; a+A b\right) \quad \text { (by the condition (RG)). }
\end{aligned}
$$

On the other hand, we have

$$
G\left(\xi_{0} a+\eta_{0} b ; a+A b\right) \leqq 0
$$

because

$$
\left\|\left(\xi_{0} a+\eta_{0} b\right)+\varepsilon(a+A b)\right\|-\varepsilon \cdot|h(\varepsilon)| \leqq\left\|\left(\xi_{0} a+\eta_{0} b\right)+\varepsilon(a+A b+h(\varepsilon) b)\right\|=1 .
$$

Therefore, we have
4) For example, see [2, p. 114].
5) See [4, p. 342].
6) See [4, Satz II. 6].

$$
\begin{equation*}
G\left(\xi_{0} a+\eta_{0} b ; a+A b\right)=0 . \tag{4}
\end{equation*}
$$

Similarly, putting $D^{-} \eta\left(\xi_{0}\right)=B$ we have
$G\left(\xi_{0} a+\eta_{0} b ; a+B b\right)=0$.
On account of (1), (3), and (4), we have $A=B$ and moreover, by (3), (4), and the relation: $G\left(\xi_{0} a+\eta_{0} b ; \xi_{0} a+\eta_{0} b\right)=1$,

$$
\begin{equation*}
D \eta\left(\xi_{0}\right)=-\frac{G\left(\xi_{0} a+\eta_{0} b ; a\right)}{G\left(\xi_{0} a+\eta_{0} b ; b\right)} \text { and } G\left(\xi_{0} a+\eta_{0} b ; b\right) \neq 0 \text { for } 0<\xi_{0}<1 \tag{5}
\end{equation*}
$$

Furthermore if follows that $G(\xi a+\eta b ; a)$ and $G(\xi a+\eta b ; b)$ are nonnegative and consequently $\eta=\eta(\xi)$ is non-increasing in $0 \leqq \xi<1$. Thus Lemma is proved.

The proof of Theorem. Necessity: In the abstract L_{ρ}-space ($\rho \geqq 1$), it is seen that

$$
\begin{aligned}
& \lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon}\{\|x+\varepsilon[p] x\|-\|x\|\}=\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon}\left\{\left\|\left[p^{\perp}\right] x^{7)}+(1+\varepsilon)[p] x\right\|-\|x\|\right\} \\
&=\lim _{\varepsilon \rightarrow 0}\left\{\left\|\left[p^{\perp}\right] x\right\|^{\rho}+|1+\varepsilon|^{\rho} \cdot\|[p] x\|^{\rho}\right\}^{\frac{1-\rho}{\rho}} \cdot|1+\varepsilon|^{\rho-1} \cdot\|[p] x\|^{\rho} \\
&=\|x\|^{1-\rho} \cdot\|[p] x\|^{\rho}
\end{aligned}
$$

for any $x \in \boldsymbol{R}$ and projector [$p]$, and also

$$
G(a+x ; a)=\|a\|^{\rho} \cdot\|a+x\|^{1-\rho}=G(a+y ; a)
$$

for $a \frown x=a \frown y=0$ and $\|a+x\|=\|a+y\|=1$.
Sufficiency: Since \boldsymbol{R} is three dimensional, we can consider the indicatrices $C(a, b)$ and $C(a, c)$ for the mutually orthogonal elements a, b, and c with $\|a\|=\|b\|=\|c\|=1$.

For any two points $(\xi, \eta) \in C(a, b)$ and $(\xi, \zeta) \in C(a, c)$ we obtain, on the assumptions, (6)

$$
G(\xi a+\eta b ; a)=G(\xi a+\zeta c ; a) .
$$

Furthermore, from the relation:

$$
G(\xi a+\eta b ; \xi a+\eta b)=1=G(\xi a+\zeta c ; \xi a+\zeta c)
$$

we have

$$
\eta \cdot G(\xi a+\eta b ; b)=\zeta \cdot G(\xi a+\zeta c ; c)
$$

and consequently,

$$
\frac{1}{\eta} \cdot \frac{G(\xi a+\eta b ; a)}{G(\xi a+\eta b ; b)}=\frac{1}{\zeta} \frac{G(\xi a+\zeta c ; a)}{G(\xi a+\zeta c ; c)} \quad(\xi \neq 1)
$$

Accordingly, by (5) it follows that

$$
\frac{1}{\eta} D \eta(\xi)=\frac{1}{\zeta} D \zeta(\xi) \quad(0<\xi<1)
$$

and hence $\eta(\xi)=\zeta(\xi)(0 \leqq \xi \leqq 1)$, because $\eta(0)=\zeta(0)=1$ and the functions $\eta(\xi)$ and $\zeta(\xi)$ are continuous.

Thus, the indicatrix $C(a, b)$ coincides with the indicatrix $C(a, c)$ and it is easily seen that

$$
\operatorname{Max}\{|\xi|,|\eta|\} \neq 1 \text { for } 0<|\xi|<1 \text { and }(\xi, \eta) \in C(a, b)
$$

Therefore, by Lemma $1, C(a, b)$ is respresented by the form:

$$
|\xi|^{\rho}+|\eta|^{\rho}=1 \quad(\rho \geqq 1)
$$

[^0]and hence $\|x\|^{\rho} /\|x+y\|^{\rho}+\|y\|^{\rho} /\|x+y\|^{\rho}=1$ for any $x, y \in \boldsymbol{R}$ with $|x| \frown|y|$ $=0$, that is, \boldsymbol{R} satisfies (L_{ρ})-condition. The theorem is completed.

Finally, we note that Dr. Yamamuro recently gave a characterization of the abstract L_{ρ} space in terms of Beurling-Livingston's duality mapping.

References

[1] A. Beurling and A. E. Livingston: A theorem on duality mappings in Banach spaces, Arkiv for Math., No. 4, 405-411 (1962).
[2] M. M. Day: Normed Linear Spaces, Eagebnisse, Berlin (1958).
[3] H. Nakano: Ueber normierte teilweise geordnete Moduln, Proc. Imp. Acad., Tokyo, 17, 311-317 (1941).
[4] H. Nakano: Stetige lineare Funktionale auf dem teilweise geordnete Modul, J. Fac. Sci. Imp. Univ. Tokyo, 4, 201-382 (1942).
[5] K. Honda and S. Yamamuro: A characteristic property of L_{p}-spaces ($p>1$), Proc. Japan Acad., 35(8), 446-448 (1959).
[6] K. Honda: A characteristic property of L_{p}-spaces ($p>1$). II, Proc. Japan Acad., 36(3), 123-127 (1960).
[7] S. Yamamuro: To appear.

[^0]: 7) $[p \perp] x=x-[p] x$ for $x \in \boldsymbol{R}$.
