79. A Characteristic Property of L_{ρ} -Spaces ($\rho \ge 1$). III

By Kôji Honda

Muroran Institute of Technology

(Comm. by Kinjirô KUNUGI, M.J.A., June 12, 1963)

The aim of this paper is to give a characterization of the abstract L_{ρ} -space¹⁾ ($\rho \ge 1$) in terms of the norm.

Through this paper, let R be a Banach lattice with a continuous semi-order.²⁾

R is called the abstract L_{ρ} -space, if the norm satisfies the following condition:

(L_e) $||x+y||^{\rho} = ||x||^{\rho} + ||y||^{\rho}$ for every $|x| \frown |y| = 0$, $x, y \in \mathbf{R}$.

When we consider the case which the norm has the restricted Gateaux's differential i.e.,

(RG)
$$G(x; [p]x) = \lim_{\varepsilon \to 0} \frac{||x + \varepsilon [p]x|| - ||x||}{\varepsilon}$$

exists for each $||x|| \leq 1$ and each projector $[p]^{3}$, it is easily seen that for numbers α, β and projectors [p], [q]

(1) $G(x; \alpha[p]x + \beta[p]y) = \alpha G(x; [p]x) + \beta G(x; [q]x)$ if the right side has a sense.

Used the condition (RG), our characterization is described in the following form.

Theorem. Suppose that \mathbf{R} is at least three dimensional space. In order that \mathbf{R} is the abstract L_{ρ} -space for some $\rho \ge 1$, it is necessary and sufficient that the norm on \mathbf{R} satisfies the conditions (RG) and

 $(*) \qquad \qquad G(a+x;a) = G(a+y;a)$

for every $a \frown x = a \frown y = 0$ and ||a+x|| = ||a+y|| = 1.

Remark. It is known that the Gateaux's differential produces the equality in the Hölder's inequality. In this sense, our theorem is closely related to the previous paper [4 and 5], especially, if the conjugately similar transformation T preserves the norm then ||a+x||=||a+y||=1 and $a \frown x = a \frown y = 0$ imply

$$G(a+x;a) = \frac{(a, \mathbf{T}(a+x))}{||\mathbf{T}(a+x)||} = \frac{(a, \mathbf{T}a)}{||\mathbf{T}(a+x)||} = \frac{(a, \mathbf{T}(a+y))}{||\mathbf{T}(a+y)||} = G(a+y;a)$$

because for ||x||=1 we have (x, Tx)=||Tx|| and hence G(x; [p]x)

3) For any $p \in \mathbf{R}$, $[p]x = \bigcup_{n=1}^{\infty} (|p| \frown nx^+) - \bigcup_{n=1}^{\infty} (|p| \frown nx^-)$ where $x^+ = x \frown 0$ and $x^- = (-x)^+$.

¹⁾ See [3: p. 312]. The braquet [\cdot] denotes the number of the reference in the last.

²⁾ A semi-order is said to be *continuous*, if for any $x_{\nu} \downarrow_{\nu=1}^{\infty}$ and $0 \leq x_{\nu} \in \mathbf{R}$ there exists x such that $x_{\nu} \downarrow_{\nu=1}^{\infty} x$.

=([p]x, Tx/||Tx||).⁴ Therefore, Theorem includes the result in the paper [5].

To prove this theorem, we shall study the indicatrix of R. In two-dimensional Euclidean space, the curve C is called the *indicatrix*⁵ if it satisfies the following conditions:

1) C is symmetric in respect to the axices,

2) C passes through the four points (1, 0), (0, 1), (1, 0) and (0, 1),

3) C is the convex continuous curve.

Particularly, the curve C(a, b):

 $\{(\xi, \eta); ||\xi a + \eta b|| = 1\}$ for $a \frown b = 0$ and ||a|| = ||b|| = 1, is called the *indicatrix of* **R**.

Lemma 1.⁶⁰ Suppose that \mathbf{R} has at least three elements a, b, c which are mutually orthogonal and ||a|| = ||b|| = ||c|| = 1. If \mathbf{R} has only one indicatrix of \mathbf{R} , then either the indicatrix C of \mathbf{R} is

 $\begin{aligned} |\xi|^{\rho} + |\eta|^{\rho} = 1 & \text{for some } \rho \ge 1 \\ \max \{|\xi|, |\eta|\} = 1. \end{aligned}$

Lemma 2. When **R** satisfies the condition (RG), the function $\eta = \eta(\xi)$ which is defined by the indicatrix:

 $||\xi a + \eta b|| = 1$ $(a \frown b = 0, ||a|| = ||b|| = 1 \text{ and } \xi, \eta \ge 0)$ is differentiable and non-increasing in $0 \le \xi < 1$. (Here, the derivative at $\xi = 0$ means the right derivative at $\xi = 0$.)

Proof. The function $\eta = \eta(\xi)$ which is defined by the indicatrix in $0 \leq \xi, \eta$, is a one-valued concave continuous function in $0 \leq \xi < 1$. Since the concave function has one-side derivatives $D^{\pm}\eta(\xi)$, putting $D^{\pm}\eta(\xi_0) = A$ for a fixed point $0 < \xi_0 < 1$, we have for any $\varepsilon > 0(\xi_0 + \varepsilon < 1)$ (2) $\eta(\xi_0 + \varepsilon) = \eta_0 + \varepsilon(A + h(\varepsilon)), \ (\eta_0 = \eta(\xi_0)),$ $\lim h(\varepsilon) = 0$

and hence

 $0 = ||(\xi_0 + \varepsilon)a + \eta(\xi_0 + \varepsilon)b|| - 1 = ||(\xi_0 a + \eta_0 b) + \varepsilon(a + Ab + h(\varepsilon)b)|| - 1.$ By the triangle inequality on the norm, we have

$$0 = \lim_{\varepsilon \to +0} \frac{1}{\varepsilon} \{ ||(\xi_0 a + \eta_0 b) + \varepsilon(a + Ab + h(\varepsilon)b)|| - 1 \}$$

$$\leq \lim_{\varepsilon \to +0} \frac{1}{\varepsilon} \{ ||(\xi_0 a + \eta_0 b) + \varepsilon(a + Ab)|| - 1 \}$$

$$= G(\xi_0 a + \eta_0 b; a + Ab) \quad \text{(by the condition (RG)).}$$

On the other hand, we have

$$G(\xi_0 a + \eta_0 b; a + Ab) \leq 0$$

because

$$||(\xi_0a+\eta_0b)+\varepsilon(a+Ab)||-\varepsilon\cdot|h(\varepsilon)|\leq ||(\xi_0a+\eta_0b)+\varepsilon(a+Ab+h(\varepsilon)b)||=1.$$
 Therefore, we have

4) For example, see [2, p. 114].

5) See [4, p. 342].

or

⁶⁾ See [4, Satz II. 6].

K. HONDA

(3)
Similarly, putting
$$G(\xi_0 a + \eta_0 b; a + Ab) = 0.$$

 $D^-\eta(\xi_0) = B$ we have
 $G(\xi_0 a + \eta_0 b; a + Bb) = 0.$

On account of (1), (3), and (4), we have A=B and moreover, by (3), (4), and the relation: $G(\xi_0a+\eta_0b;\xi_0a+\eta_0b)=1$,

(5)
$$D\eta(\xi_0) = -\frac{G(\xi_0 a + \eta_0 b; a)}{G(\xi_0 a + \eta_0 b; b)}$$
 and $G(\xi_0 a + \eta_0 b; b) \neq 0$ for $0 < \xi_0 < 1$.

Furthermore if follows that $G(\xi a + \eta b; a)$ and $G(\xi a + \eta b; b)$ are non-negative and consequently $\eta = \eta(\xi)$ is non-increasing in $0 \leq \xi < 1$. Thus Lemma is proved.

The proof of Theorem. Necessity: In the abstract L_{ρ} -space $(\rho \ge 1)$, it is seen that

$$\begin{split} \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \{ ||x + \varepsilon \lfloor p \rfloor x|| - ||x|| \} = \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \{ ||\lfloor p^{\perp} \rfloor x^{\tau_{2}} + (1 + \varepsilon) \lfloor p \rfloor x|| - ||x|| \} \\ = \lim_{\varepsilon \to 0} \{ ||\lfloor p^{\perp} \rfloor x||^{\rho} + |1 + \varepsilon|^{\rho} \cdot ||\lfloor p \rfloor x||^{\rho} \}^{\frac{1 - \rho}{\rho}} \cdot |1 + \varepsilon|^{\rho - 1} \cdot ||\lfloor p \rfloor x||^{\rho} \\ = ||x||^{1 - \rho} \cdot ||\lfloor p \rfloor x||^{\rho} \end{split}$$

for any $x \in \mathbf{R}$ and projector [p], and also $G(a+x; a) = ||a||^{\rho} \cdot ||a+x||^{1-\rho} = G(a+y; a)$

for $a \frown x = a \frown y = 0$ and ||a+x|| = ||a+y|| = 1.

Sufficiency: Since R is three dimensional, we can consider the indicatrices C(a, b) and C(a, c) for the mutually orthogonal elements a, b, and c with ||a|| = ||b|| = ||c|| = 1.

For any two points $(\xi, \eta) \in C(a, b)$ and $(\xi, \zeta) \in C(a, c)$ we obtain, on the assumptions,

(6) $G(\xi a + \eta b; a) = G(\xi a + \zeta c; a).$

Furthermore, from the relation:

$$G(\xi a + \eta b; \xi a + \eta b) = 1 = G(\xi a + \zeta c; \xi a + \zeta c)$$

we have $\eta \cdot G(\xi a + \eta b; b) = \zeta \cdot G(\xi a + \zeta c; c)$ and consequently,

$$\frac{1}{\eta} \cdot \frac{G(\xi a + \eta b; a)}{G(\xi a + \eta b; b)} = \frac{1}{\zeta} \frac{G(\xi a + \zeta c; a)}{G(\xi a + \zeta c; c)} \quad (\xi \neq 1).$$

Accordingly, by (5) it follows that

$$\frac{1}{\eta} D\eta(\xi) = \frac{1}{\zeta} D\zeta(\xi) \quad (0 < \xi < 1)$$

and hence $\eta(\xi) = \zeta(\xi)$ $(0 \le \xi \le 1)$, because $\eta(0) = \zeta(0) = 1$ and the functions $\eta(\xi)$ and $\zeta(\xi)$ are continuous.

Thus, the indicatrix C(a, b) coincides with the indicatrix C(a, c)and it is easily seen that

 $\begin{array}{l} \max \left\{ |\xi|, |\eta| \right\} \neq 1 \text{ for } 0 < |\xi| < 1 \text{ and } (\xi, \eta) \in C(a, b). \\ \text{Therefore, by Lemma 1, } C(a, b) \text{ is respresented by the form:} \\ |\xi|^{\rho} + |\eta|^{\rho} = 1 \quad (\rho \ge 1) \end{array}$

7) $[p \perp]x = x - [p]x$ for $x \in \mathbf{R}$.

 $\mathbf{350}$

and hence $||x||^{\rho}/||x+y||^{\rho}+||y||^{\rho}/||x+y||^{\rho}=1$ for any $x, y \in \mathbb{R}$ with $|x| \frown |y| = 0$, that is, \mathbb{R} satisfies (L_{ρ}) -condition. The theorem is completed.

Finally, we note that Dr. Yamamuro recently gave a characterization of the abstract L_{ρ} space in terms of Beurling-Livingston's duality mapping.

References

- A. Beurling and A. E. Livingston: A theorem on duality mappings in Banach spaces, Arkiv for Math., No. 4, 405-411 (1962).
- [2] M. M. Day: Normed Linear Spaces, Eagebnisse, Berlin (1958).
- [3] H. Nakano: Ueber normierte teilweise geordnete Moduln, Proc. Imp. Acad., Tokyo, 17, 311-317 (1941).
- [4] H. Nakano: Stetige lineare Funktionale auf dem teilweise geordnete Modul, J. Fac. Sci. Imp. Univ. Tokyo, 4, 201-382 (1942).
- [5] K. Honda and S. Yamamuro: A characteristic property of L_p -spaces (p>1), Proc. Japan Acad., **35**(8), 446-448 (1959).
- [6] K. Honda: A characteristic property of L_p-spaces (p>1). II, Proc. Japan Acad., 36(3), 123-127 (1960).
- [7] S. Yamamuro: To appear.