76. Note on the Modular Forms

By Koziro Iwasaki

Musashi Institute of Technology, Tokyo
(Comm. by Zyoiti Suetuna, m.J.A., June 12, 1963)

1. In his paper [2] Bochner treated the modular forms of level 1. We shall add a little to his result. In the following we shall use freely the notaions and the results in the papers of Bochner and of ourselves [5].
2. By the theory of Bochner we have

Theorem of Bochner. Let λ and k be positive numbers and $f(z)$ be an analytic function defined on the upper half plane such that $f(z+\lambda)=f(z)$ and $f(z)= \pm\left(\frac{i}{z}\right)^{r} f\left(-\frac{1}{z}\right)$. Let $\sum_{n=0}^{\infty} a_{n} e^{\frac{2 \pi}{\lambda} n z i}$ be the Fourier series of $f(z)$ and $\sum_{n=0} a_{n} n^{-s}$ be convergent for some s. Then

$$
\sum_{n=0}^{\infty} a_{n} \varphi(\sqrt{n})= \pm \sum_{n=0}^{\infty} a_{n} T_{\lambda, 2 k} \varphi(\sqrt{n})
$$

for any φ in \mathfrak{P}_{0}, where $T_{\lambda, 2 k} \varphi$ is the Bochner transform of φ.
From now we shall consider the case where $\lambda=1, k$ is an even number, $a_{0}=0$ and $f(z)=z^{-k} f\left(-\frac{1}{z}\right)$. In this case $\sum_{n=1}^{\infty} a_{n} e^{2 \pi n z i}$ is a cusp form of dimension $-k$ and of level 1. By the general theory of cusp form (Hecke [4] p. 652) we know $\sum_{n=1} \frac{a_{n}}{n^{s}}$ converges absolutely for $\operatorname{Re} s>\frac{k+1}{2}$. Using the above theorem of Bochner we can prove

Proposition 1. Let k be an even natural number and $\sum_{n=1}^{\infty} a_{n} e^{2 \pi n x i}$ be a cusp form of dimension $-k$ and of level 1 . If $f(x)$ is a function of class C^{∞} such that $\sum_{n=1}^{\infty} a_{n} f(\sqrt{n})$ is convergent and $\int_{0}^{\infty} x^{k+\frac{3}{2}}\left|\left(\frac{d}{x d x}\right)^{2} f(x)\right| d x$ exists, then

$$
\sum_{n=1}^{\infty} a_{n} f(\sqrt{n})=(-1)^{\frac{k}{2}} \sum_{n=1}^{\infty} a_{n} T_{1,2 k} f(\sqrt{n})
$$

Proof. We have $\left|T_{1,2 k} f(\sqrt{n})\right|=O\left(n^{-\frac{k}{2}-\frac{3}{4}}\right)$ by Proposition 4 in [5]. Therefore $\sum_{n=1}^{\infty} a_{n} T f(\sqrt{n})$ is absolutely convergent by Hecke's theorem.

Now we take functions $\varphi_{1}(x), \varphi_{2}(x), \cdots$ in \mathfrak{F}_{0} such that

$$
\begin{array}{lll}
\varphi_{m}(x)=f(x) & \text { for } & 0 \leq x \leq \sqrt{m} \\
\varphi_{m}(x)=0 & \text { for } & x \geq \sqrt{m+1} \text { and } \\
\left|\varphi_{m}(x)\right| \leq|f(\sqrt{m})| & \text { for } & \sqrt{m}<x<\sqrt{m+1}
\end{array}
$$

Then

$$
\begin{gathered}
\sum_{n=1}^{\infty} a_{n} \varphi_{m}(\sqrt{n})=(-1)^{\frac{k}{2}} \sum_{n=1}^{\infty} a_{n} T_{1,2 k} \varphi_{m}(\sqrt{n}) \text { and } \\
\sum_{n=1}^{\infty} a_{n} \varphi_{m}(\sqrt{n})=\sum_{n=1}^{m} a_{n} f(\sqrt{n}) \text { converges to } \sum_{n=1}^{\infty} a_{n} f(\sqrt{n}) .
\end{gathered}
$$

On the other hand we obtain by Proposition 4 in [5]

$$
\begin{aligned}
& \sum_{n=1}^{\infty} a_{n} T_{1,2 k} f(\sqrt{n})-\sum_{n=1}^{\infty} a_{n} T_{1,2 k} \varphi_{m}(\sqrt{n}) \\
&=O\left(\sum_{n=1}^{\infty}\left|a_{n}\right| n^{-\frac{k}{2}-\frac{3}{4}} \int_{0}^{\infty} x^{k+\frac{3}{2}}\left|\left(\frac{d}{x d x}\right)^{2}\left(f(x)-\varphi_{m}(x)\right)\right| d x\right) \\
&=O\left(\int_{\sqrt{m}}^{\infty} x^{k+\frac{3}{2}}\left|\left(\frac{d}{x d x}\right)^{2} f(x)\right| d x\right) .
\end{aligned}
$$

And the last term converges to 0 if m tends to infinity. (Q.E.D.)
3. We shall apply Proposition 1 to the function $f(x)=x^{-\nu} J_{\nu}(\alpha x)$ with suitable number ν, where α is a positive number. Because $f(\sqrt{n})=O\left(n^{-\frac{\nu}{2}} n^{-\frac{1}{4}}\right)$ and $\sum \frac{a_{n}}{n^{s}}$ is absolutely convergent for $\operatorname{Re} s>\frac{k+1}{2}$, $\sum_{n=1}^{\infty} a_{n} f(\sqrt{n})$ converges absolutely if $\nu>k+\frac{1}{2}$. On the other hand, we have

$$
\int_{0}^{\infty} x^{k+\frac{3}{2}}\left|\left(\frac{d}{x d x}\right)^{2} f(x)\right| d x \leq c+c \int_{1}^{\infty} x^{k+\frac{3}{2}-(\nu+2)-\frac{1}{2}} d x
$$

since

$$
\left(\frac{d}{x d x}\right)^{2} f(x)=x^{-(\nu+2)} J_{\nu+2}(\alpha x) .
$$

Therefore the integral converges for $\nu>k$.
According to Bateman [1] p. 48 (7) we have
$T_{1,2 k}\left\{x^{-\nu} J_{\nu}(4 \pi \sqrt{\xi} x)\right\}=\left\{\begin{array}{cl}\xi^{-\frac{\nu}{2}} \pi^{\nu-k} \frac{1}{\Gamma(\nu-k+1)}\left(\xi-x^{2}\right)^{\nu-k} & \text { for } 0<x<\sqrt{\xi}, \\ 0 & \text { for } x \geq \sqrt{\xi},\end{array}\right.$
if $\nu+1>k>0$ and $\xi>0$.
Thus we can apply Proposition 1 to $x^{-(k+r)} J_{k+r}(4 \pi \sqrt{\xi} x)$, where $r>\frac{1}{2}$, and we get

$$
\sum_{n=1}^{\infty} a_{n} n^{-\frac{k+r}{2}} J_{k+r}(4 \pi \sqrt{\xi n})=(-1)^{\frac{k}{2}} \frac{(2 \pi)^{r} \xi^{-\frac{k+r}{2}}}{\Gamma(r+1)} \sum_{0<n<\xi} a_{n}(\xi-n)^{r} .
$$

Therefore

$$
\sum_{0<n<\xi} a_{n}(\xi-n)^{r}=O\left(\xi^{\frac{k+r}{2}-\frac{1}{4}}\right) .
$$

Proposition 2. If $\sum_{n=1}^{\infty} \alpha_{n} e^{2 \pi n z i}$ is a cusp form of even dimension $-k$ and of level 1 and $r>\frac{1}{2}$, then

$$
\sum_{n=1}^{\infty} a_{n}\left(\frac{\xi}{n}\right)^{\frac{k+r}{2}} J_{k+r}(4 \pi \sqrt{\xi n})
$$

is locally uniformly convergent and its value is equal to

$$
(-1)^{\frac{k}{2}} \frac{(2 \pi)^{r}}{\Gamma(r+1)} \sum_{0<n<\xi} a_{n}(\xi-n)^{r}
$$

(This equality is proved by Bochner in more generalized form. See [2], p. 355, Theorem 11. But only the Abel summability of the infinite series is shown there.)

Corollary. With the same notation as in Proposition 2

$$
\sum_{0<n<\xi} a_{n}(\xi-n)^{r}=O\left(\xi^{\frac{k}{2}+\frac{r}{2}-\frac{1}{4}}\right)
$$

for any real number r greater than $\frac{1}{2}$.
4. We shall now deal with the case $r=0$.

Proposition 3. The series $\sum_{n=1}^{\infty}\left(\frac{\xi}{n}\right)^{\frac{k}{2}} a_{n} J_{k}(4 \pi \sqrt{n \xi})$ is uniformly convergent to $(-1)^{\frac{k}{2}} \sum_{n \leq \xi} a_{n}$ in any interval $\left[\xi_{1}, \xi_{2}\right]$ which contains no integer.

Proof. The method of the proof of this proposition is quite similar to Hardy's in [3]. We begin with stating the results on cusp forms proved by Hecke in [4] (p. 651):
a) $a_{n}=O\left(n^{\frac{k}{2}}\right)$,
ß) $\left|a_{1}\right|+\cdots+\left|a_{n}\right|=O\left(n^{\frac{k+1}{2}}\right)$.
and
r) $\sum_{n=1}^{\infty} a_{n} n^{-s}$ is absolutely convergent for $s>\frac{k+1}{2}$.

Let us denote

$$
A_{r}(x)=\frac{(-1)^{\frac{k}{2}}}{\Gamma(r+1)^{2}} \sum_{n \leq \xi} a_{n}(x-n)^{r}
$$

for any non-negative number r and

$$
A(x)=A_{0}(x)-(-1)^{\frac{k}{2}} \frac{1}{2} a(x)
$$

where $a(x)$ equals to a_{x} if x is a natural integer and equals to 0 otherwise. Clearly

$$
\frac{d A_{r+1}(x)}{d x}=A_{r}(x) \text { and } \int_{0}^{x} A(x) d x=A_{1}(x)
$$

Put

$$
S(x, N)=\sum_{n=1}^{N} a_{n}\left(\frac{x}{n}\right)^{\frac{k}{2}} J_{k}(4 \pi \sqrt{n x})
$$

Then

$$
\begin{aligned}
& S(x, N)-\left(\frac{x}{N}\right)^{\frac{k}{2}} A_{0}(N) J_{k}(4 \pi \sqrt{N x}) \\
&=-x^{\frac{k}{2}} \sum_{n=1}^{N} a_{n} \int_{n}^{N} d\left(t^{-\frac{k}{2}} J_{k}(4 \pi \sqrt{x t}) d t\right.
\end{aligned}
$$

$$
\begin{aligned}
& =2 \pi x^{\frac{k+1}{2}} \sum_{n=1}^{N} a_{n} \int_{n}^{N} t^{-\frac{k+1}{2}} J_{k+1}(4 \pi \sqrt{x t}) d t \\
& =2 \pi x^{\frac{k+1}{2}} \int_{0}^{N} A_{0}(t) t^{-\frac{k+1}{2}} J_{k+1}(4 \pi \sqrt{x t}) d t .
\end{aligned}
$$

On the other hand we have

$$
\begin{aligned}
& \int_{0}^{N} A_{1}(t) t^{-\frac{k+2}{2}} J_{k+2}(4 \pi \sqrt{x t}) d t \\
& \quad=-\frac{1}{2 \pi \sqrt{x}} A_{1}(N) N^{-\frac{k+1}{2}} J_{k+1}(4 \pi \sqrt{N x})+\frac{1}{2 \pi \sqrt{x}} \int_{0}^{N} A_{0}(t) t^{-\frac{k+1}{2}} J_{k+1}(4 \pi \sqrt{x t}) d t .
\end{aligned}
$$

Therefore we get

$$
\begin{aligned}
S(x, N)= & \left(\frac{x}{N}\right)^{\frac{k}{2}} A_{0}(N) J_{k}(4 \pi \sqrt{N x})+2 \pi\left(\frac{x}{N}\right)^{\frac{k+1}{2}} A_{1}(N) J_{k+1}(4 \pi \sqrt{N x}) \\
& +4 \pi^{2} x^{\frac{k+2}{2}} \int_{0}^{N} A_{1}(t) t^{-\frac{k+2}{2}} J_{k+2}(4 \pi \sqrt{x t}) d t .
\end{aligned}
$$

By the estimation (β) and $J_{\nu}(z)=O\left(z^{-\frac{1}{2}}\right)$ the first term on the right hand side is equal to $O\left(N^{\frac{1}{4}} \log N\right.$) locally uniformly for x. And by Corollary of Proposition 2 the second term is equal to $O\left(N^{-\frac{1}{2}}\right)$ locally uniformly for x.

Let us denote the last term with $K(x, N)$. Then we have

$$
S(x, N)=K(x, N)+o(1)
$$

and

$$
\begin{aligned}
& K(x, N)=(-1)^{\frac{k}{2}} 2 \pi x^{\frac{k+2}{2}} \sum_{n=1}^{\infty} a_{n} n^{-\frac{k+1}{2}} \int_{0}^{N} t^{-\frac{1}{2}} J_{k+2}(4 \pi \sqrt{x t}) J_{k+1}(4 \pi \sqrt{n t}) d t \\
& =(-1)^{\frac{k}{2}} x^{\frac{k+1}{2}} \sum_{n=1}^{\infty} a_{n} n^{-\frac{k+1}{2}} \int_{0}^{4 \pi \sqrt{\bar{x} N}} J_{k+2}(u) J_{k+1}\left(\sqrt{\frac{n}{x}} u\right) d u . \\
& \text { Because } \quad \int_{0}^{\infty} J_{\nu+1}(x) J_{\nu}(a x)= \begin{cases}a^{\nu} & (0<a<1) \\
\frac{1}{2} & (a=1) \\
0 & (a>1),\end{cases}
\end{aligned}
$$

we have

$$
K(x, N)=A(x)-(-1)^{\frac{k}{2}} x^{\frac{k+1}{2}} \sum_{n=1}^{\infty} a_{n} n^{-\frac{k+1}{2}} \int_{4 \pi \sqrt{x N}}^{\infty} J_{k+2}(u) J_{k+1}\left(\sqrt{\frac{n}{x}} u\right) d u .
$$

Now we shall show that if N tends to the infinity $K(x, N)$ $=A(x)+o(1)$ uniformly in any interval $\left[x_{1}, x_{2}\right]$ which contains no integer. Since

$$
J_{\imath}(z)=\sqrt{\frac{2}{\pi z}} \cos \left(z-\frac{\nu \pi}{2}-\frac{\pi}{4}\right)+O\left(z^{-\frac{3}{2}}\right),
$$

we have

$$
\begin{gathered}
J_{k+2}(u) J_{k+1}\left(\sqrt{\frac{n}{x}} u\right)=\frac{2}{\pi} x^{\frac{1}{4}} n^{-\frac{1}{4}} u^{-1} \cos \left(u-\frac{k}{2} \pi-\frac{\pi}{4}\right) \\
\times \cos \left(\sqrt{\frac{n}{x}} u-\frac{k}{2} \pi-\frac{3}{4} \pi\right)+O\left(n^{-\frac{1}{4}} u^{-2}\right)
\end{gathered}
$$

uniformly for x in [x_{1}, x_{2}]. Therefore
$K(x, N)-A(x)$

$$
=(-1)^{\frac{k}{2}} \frac{1}{\pi} x^{\frac{k}{2}+\frac{3}{4}} \sum_{n=1}^{\infty} a_{n} n^{-\frac{k}{2}-\frac{3}{4}} \int_{4 \pi \sqrt{N x}}^{\infty} u^{-1}\left((-1)^{k+1} \cos \left(\left(\sqrt{\frac{n}{x}}+1\right) u\right)\right.
$$

$$
\left.-\sin \left(\left(\sqrt{\frac{n}{x}}-1\right) u\right)\right) d u+O\left(\sum_{n=1}^{\infty}\left|a_{n}\right| n^{-\frac{k+1}{2}-\frac{1}{4}} \cdot \frac{1}{4 \pi \sqrt{N x}}\right)
$$

$$
=(-1)^{\frac{k}{2}} \frac{1}{\pi} x^{\frac{k}{2}+\frac{3}{4}} \sum_{n=1}^{\infty} a_{n} n^{-\frac{k}{2}-\frac{3}{4}}\left((-1)^{k-1} \int_{4 \pi \sqrt{N}(\sqrt{x}+\sqrt{n})}^{\infty} \frac{\cos u}{u} d u\right.
$$

$$
\left.-\operatorname{sgn} .(\sqrt{n}-\sqrt{x}) \int_{4 \pi \sqrt{N}|\sqrt{n}-\sqrt{x}|}^{\infty} \frac{\sin u}{u} d u\right)+O\left(N^{-\frac{1}{2}}\right),
$$

where $\operatorname{sgn}(0)$ means 0 , and we obtain

$$
\begin{aligned}
K(x, N)-A(x)= & O\left(\sum_{n=1}^{\infty}\left|a_{n}\right| n^{-\frac{k}{2}-\frac{3}{4}}\left(N^{-\frac{1}{2}}(\sqrt{x}+\sqrt{n})^{-1}+N^{-\frac{1}{2}}|\sqrt{n}-\sqrt{x}|^{\frac{1}{2}}\right)\right. \\
& +O\left(N^{-\frac{1}{2}}\right)=O\left(N^{-\frac{1}{2}}\right)
\end{aligned}
$$

uniformly for x in $\left[x_{1}, x_{2}\right.$] if this interval contains no integer. Thus we have proved Proposition 3.

References

[1] H. Bateman: Tables of Integral transforms, 2, New York (1954).
[2] S. Bochner: Some properties of modular relations, Ann. of Math., 53(2), 332-363 (1951).
[3] G. H. Hardy: A further note on Ramanujan's arithmetical function $\tau(n)$, Proc. Cambridge Philos. Soc., 34, 309-315 (1938).
[4] E. Hecke: Mathematische Werke, Göttingen (1959).
[5] K. Iwasaki: On Bochner transforms, Proc. Japan Acad., 39(5), 257-262 (1963).

