75. A Generalization of König's Lemma

By Gaisi TAKEUTI

Department of Mathematics, Tokyo University of Education, Tokyo (Comm. by Zyoiti SUETUNA, M.J.A., June 12, 1963)

König proved in [1] the following lemma:

Let $E_1, E_2, \dots, E_n, \dots$ be an enumerable sequence of finite and non empty sets and R a relation of two arguments satisfying the following condition: for every element x_{n+1} of E_{n+1} $(n \ge 0)$ there is an element x_n of E_n corresponding to x_{n+1} by the relation R i.e. $x_n R x_{n+1}$. Then we can obtain an infinite sequence $a_1, a_2, \dots, a_n, \dots$ such that $a_n \in E_n$ and $a_n R a_{n+1}$ $(n=1, 2, \dots)$.

Sometimes, it is also called Brouwer's fan theorem.

In this paper we shall prove a generalization of this lemma. Let R be a set. p stands for the element of R. A finite set W_p is assigned for every $p \in R$. If R_1 is a subset of R and f is an element of $\prod_{p \in R_1} W_p$, then f is called a *partial function* (over R) and D(f)(the domain of f) is defined to be R_1 . If D(f)=R, then f is called a *total function*. If f and g are partial functions and $D(f)=D_0 \subseteq D(g)$ and f(x)=g(x) for every $x \in D_0$, then we call g an *extension* of f and write $f \prec g$ and $f=g \upharpoonright D_0$. If $f \prec g$ and $D(g)=D(f) \cup N$, then we say 'g is an extension of f over N'.

THEOREM. Let P be a property about partial function satisfying the following conditions:

- 1. P(f) holds if and only if there exists a finite subset N of R satisfying $P(f \upharpoonright N)$.
- 2. P(f) holds for every total function f.

Then there exists a finite subset N_0 of R such that P(f) holds if $D(f) \supseteq N_0$.

It is noted that \overline{R} be arbitrary large. The case that R is the set of natural numbers is the original König's lemma.

To prove this theorem we shall first define several concepts. We say $\tilde{P}(f)$ if there exists a finite subset N of R such that every extension of f over N satisfies P. Clearly $\tilde{P}(f)$ holds for every total function.

We define f * g to be the function uniquely defined by the following conditions:

- 1) $D(f*g) = D(f) \cup D(g)$
- 2) $f \prec f \ast g$
- 3) If $p \in D(g) D(f)$, then (f * g)(p) = g(p).

If g is the function whose domain is $\{p\}$ and $g(p)=w_p$, then we use sometimes the abbreviated notation $f * w_p$ for f * g.

LEMMA 1. If $\widetilde{P}(f * w_p)$ for every $w_p \in W_p$ then $\widetilde{P}(f)$, and vice versa.

PROOF. Since the sufficiency is clear, we shall assume $\widetilde{P}(f * w_p)$ for every $w_p \in W_p$. Let w_p^1, \dots, w_p^n be the series of all the elements of W_p . For every $i(1 \le i \le n)$ there exists a finite subset N^i of R such that every extension of $f * w_p^i$ over N^i satisfies P. N is defined to be $N^1 \cup \dots \cup N^n \cup \{p\}$. We see clearly that every extension of f over N satisfies P.

PROOF of Theorem. We have only to prove that the empty function ϕ satisfies \tilde{P} . We shall assume $\mathcal{T}\tilde{P}(\phi)(\mathcal{T}\tilde{P}(\phi))$ is read ' $\tilde{P}(\phi)$ does not hold'). A family \mathfrak{F} of partial functions is called *regular* if the following conditions are fulfilled.

1) If $f \in \mathfrak{F}$ and $g \in \mathfrak{F}$, then either $f \prec g$ or $g \prec f$ holds.

2) If $f \in \mathfrak{F}$, then $\mathbb{Z}\widetilde{P}(f)$.

In virtue of Zorn's lemma, there exists a maximal regular family \mathfrak{F}_0 .

If \mathfrak{F}_0 contains a maximal element f_0 , then $\widetilde{P}(f_0)$ does not hold whence follows $D(f_0) \subseteq \mathbb{R}$. In this case, we can extend f_0 to a function g satisfying $\mathcal{T}\widetilde{P}(g)$ by using Lemma 1. This is a contradiction. Thus \mathfrak{F}_0 does not contain a maximal element.

There exists uniquely a function f_0 satisfying the following conditions.

- 1) $D(f_0) = \bigcup_{f \in \mathfrak{F}_0} D(f).$
- 2) $f \prec f_0$ holds for every $f \in \mathfrak{F}_0$.

If $\mathcal{T}\widetilde{P}(f_0)$, then $f_0 \in \mathfrak{F}_0$ and f_0 is the maximal element of \mathfrak{F}_0 , whence follows a contradiction. Therefore $\widetilde{P}(f_0)$ holds. Hence there exists a finite subset N of R such that every extension of f_0 over N satisfies P. Let g_1, \dots, g_n be the series of all the functions whose domain is N. Since $P(f_0 * g_i)$ for every $i \ (1 \le i \le n)$, there exists $h_i \prec f_0$ such that $P(h_i * g_i)$ and $D(h_i)$ is a finite subset. Therefore $D(h_1 * \dots * h_n)$ is finite. Let p_1, \dots, p_m be the series of all the points of $D(h_1 * \dots * h_n)$. There exists a function $f_i \in \mathfrak{F}_0$ whose domain contains $p_i(1 \le i \le m)$. Let f_k be the maximum among f_1, \dots, f_m . Then $h_1 * \dots * h_n \prec f_k$. Hence follows $\widetilde{P}(f_k)$ which contradicts $f_k \in \mathfrak{F}_0$.

Reference

 [1] D. König: Sur les correspondances multivoque des ensembles, Fund. Math., 8, 114-134 (1926).