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1. Let Sa, be a given infinite series with the sequence of partial
sums {s,}. Let {p,} be a sequence of constants, real or complex, and
let us write

P,=py+p,+ 04Dy
The sequence to sequence transformation, viz.

—_ > pn—vsv J— 2 pvsn-—v
(LD =3 Pt =S P, (Po)

defines the sequence {t,} of Norlund means of the sequence {s,},
generated by the sequence of constants {p,}. The series > a, or the
sequence {s,} is said to be summable by Noérlund means, or summable
(N, p,) to the sum s, if lim ¢, exists and equals s.

The condition of regularity of the method of summability (&, p,)
defined by (1.1) are

(1.2) lim p,/P,=0,
and
(1.3) §|pk|=O(Pn), as  m->oo.

If {p,} is real and non-negative, (1.3) is automatically satisfied
and then (1.2) is the necessary and sufficient condition for the reg-
ularity of the method of summation (N, p,).

In the special case in which p,=1/(n+1), and, therefore

P,~logmn, as mn—>oo,
t, reduces to the familiar ‘harmonic mean’ [4] of s,, and if it be
denoted by ¢, then Sla, or the sequence {s,} is said to be summable
by harmonic means, or summable (H), to the sum s if lim#,=s.

N—00

If the method of summability (N, p,) be superimposed on the
Cesaro means of order one, another method of summability (&, p,)-C,,
is obtained [17.

2. Let f(x) be a periodic function with period 2z and integrable
in the sense of Lebesgue over (—=, ). Let the Fourier series of
S(x) be
2.1) %ao-l-i (a, cos nw-+b, sin nx)=>" A,(x),

n=1 "l:(?

and its conjugate series is
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(2.2) ii‘l(bn cos nx—a, sin nx) =ﬁ] B, ().
We write
V(&)= f(x+t)—f(z—t)—,
r0)= [ 1w du,
p(1/t)="p.,
and P(1/t)=P., where ¢ is the integral part of 1/t.

In 1959 Varshney [6] proved the following theorem.
THEOREM. If

rt)= [ lvwldu=o| - F],

log 1/t
as t—>-+0, then the sequence {nB,(x)}is summable (N, 1/(n+1))-C, to
the value I/z.

In this paper we prove two Theorems. In the first of these we
show that even if this particular sequence {1/(n-+1)} be replaced by
a more general sequence {p,}, the result will continue to hold true.
In the second we give a more general condition for the (N, p,)-C,
summability of the sequence {nB,(x)}. In what follows {p,} is real,
non-negative and non-inereasing sequence such that P,—>o with n.
We prove the following Theorems.

8. THEOREM 1. If (N, p,) be a regular Norlund method, defined
by a real, non-negative, monotonic mon-increasing sequence of con-
stants {p,}, such that P, o, and

(3.1) Y P,Jk log k=0(P,),
k=a
as n—>oo, where a 1s a fixed positive integer; then, if
t t
3.2 U(t)= du= Ii‘ 1:
(32) R e

as t— -0, the sequence {nB,(x)} is summable (N, p,)-C,, to the value
l=.

THEOREM 2. If (N, p,) be a regular Norlund method defined by
a real mon-negative and mnon-increasing sequence such that P,— o
with n and if

(3:3) v)= [ 1vt|du=o B0 |

as t—>+0, then the sequence {nB,(x)} is summable (N, p,)-C, to the
value l/x.

4. We require the following lemmas to prove our Theorems.
Lemma 1. [2]. (i). For 0<t<=r, and for any n, ¢ and b,

Sp, 6P| < AP(L)E),

where A 1is an absolute constant, and
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(ii) (N<PA/R)
Lemma 2. For 0<t<1/n,
1 & <sinkt coskt)‘
== >1p,. —
1Q.(8)] \npn%p (s t
=0(n).

1Q.(0)| = [P ]

n I
*O[ p, =P ":‘
=0(n).
Lemma 3. For 0<t<m,
_ P(l/t)}
(¢ _0[% :
Q.1=0 L5
Proof. By lemma 1(i) and Abel’s transformation, we have

0.ty =0f sin kit 1+O[P(1/t):|

Proof.

kt?
Al 1 sin (n— k)t 1 | sin(n—k)t
"O_tP (n—k)t HJFO tP, W, P (n—k)t H
P(1/t)
+o S

_ 1 < 1 (1 ==2
—O_ tP, Jaz=opkj|+0l: tP { t k;ll pkl}}
OI: pn—l il OI: pt+1 [P(l/t)il
+ t*P, + t*P, }—1—0 tP,
[P(l/t)J
tp, 1’
by Lemma 1(ii) and since |> sin kt/k|<iz+1 [5].

4. PROOF OF THEOREM 1. Let ¢,(®) be the (C,1) transform of
the sequence {nB,(x)}, then after Mohanty and Nanda [3], we have

a,,(x)—l/EZ%i rB.(¢)—l/x
1 < sin nt cos nt >
= t - .
nof V() 4n sin®*it  2tan 4t @t
+Lf"«/f(t) sin nt dé4-o(1)

(4.1) f w(t )[sm nt _ cos nt]dt-l—o(l),

by Riemann-Lebesgue theorem.

On account of the regularity of the method of summability, we
have to show that under our assumptions
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- 1 & sin kt coskt:l
, 1 . . dt=0(1),
(4.2) [w<t>ﬂpn;pn-[ Bkt cos o)
as m—»>co,
We set
" 1 2 sin kt  cos kt
= 1 — dt
1= [0 g S [ =2
= [Tv® Q. a
0
1/n ) T
=(J"+ [+ ) ewa
0 1/n bl
(4.3) =T+ 1,+1,.

Now, by Lemma 2,

=0 ["Ivole.md]
= 00w (1)

= ioen]
nlogn

(4.4) =o0(1), as n—>oo.
Again, by Lemma 38,

L0 f o1 E D a

(o 29) ]
+0[%fﬁ_w§)ﬂ@dt]+o(l)
" m

oorsl 3 (L8, el 3 [

:0(1)+o[%nf" de],

xlog x

where 2x=1/t,

1 & P
=o@o| )
o)to P, [1/261:“ klogk

(4.5) =o(1).

Since the method of summation is regular, we have
(4.6) Ii=0(1),
as n—>co, by Riemann-Lebesgue theorem.

This completes the proof of the Theorem 1.

PrROOF OF THEOREM 2. Here also we have to show that, under
the condition (8.3),

I=o0(1).
By Lemma 2 and hypothesis (3.8)
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I =0[n¥(1/n)]
=o[np,/P,]
(4.7) =o(1),
since np,<P,.
Again, by Lemma 3,

Izzo[gl«p(m%/:)dt]

Loty

1[5 WP 5,7
+O[“P"“f LOLAD gt |+oqy

" 1/n

e[ (S0, Je[} [ 2004

=o(1)—l—o[;‘) fnp(x) dx:I

"1/

(4.8) =o(1).

Since the method of summation is regular, we have
(4.9) Ii=0(1),
as m—>o, by Riemann-Lebesgue theorem.

This proves the Theorem 2.

I am very much indebted to Professor B. N. Prasad for his kind
interest and advice in the preparation of this paper.
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