101. Nörlund Summability of a Sequence of Fourier Coefficients

By Tarkeshwar Singh
Department of Mathematics, University of Allahabad, India
(Comm. by Kinjirô Kunugi, m.J.A., Sept. 12, 1963)

1. Let $\sum a_{n}$ be a given infinite series with the sequence of partial sums $\left\{s_{n}\right\}$. Let $\left\{p_{n}\right\}$ be a sequence of constants, real or complex, and let us write

$$
P_{n}=p_{0}+p_{1}+p_{2}+\cdots p_{n} .
$$

The sequence to sequence transformation, viz.

$$
\begin{equation*}
t_{n}=\sum_{\nu=0}^{n} \frac{p_{n-\nu} s_{\nu}}{P_{n}}=\sum_{\nu=0}^{n} \frac{p_{\nu} s_{n-\nu}}{P_{n}}, \quad\left(P_{n} \neq 0\right), \tag{1.1}
\end{equation*}
$$

defines the sequence $\left\{t_{n}\right\}$ of Nörlund means of the sequence $\left\{s_{n}\right\}$, generated by the sequence of constants $\left\{p_{n}\right\}$. The series $\sum a_{n}$ or the sequence $\left\{s_{n}\right\}$ is said to be summable by Nörlund means, or summable (N, p_{n}) to the sum s, if $\lim _{n \rightarrow \infty} t_{n}$ exists and equals s.

The condition of regularity of the method of summability $\left(N, p_{n}\right)$ defined by (1.1) are

$$
\begin{equation*}
\lim _{n \rightarrow \infty} p_{n} / P_{n}=0 \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=0}^{n}\left|p_{k}\right|=O\left(P_{n}\right), \quad \text { as } \quad n \rightarrow \infty . \tag{1.3}
\end{equation*}
$$

If $\left\{p_{n}\right\}$ is real and non-negative, (1.3) is automatically satisfied and then (1.2) is the necessary and sufficient condition for the regularity of the method of summation $\left(N, p_{n}\right)$.

In the special case in which $p_{n}=1 /(n+1)$, and, therefore

$$
P_{n} \sim \log n, \quad \text { as } \quad n \rightarrow \infty,
$$

t_{n} reduces to the familiar 'harmonic mean' [4] of s_{n}, and if it be denoted by t_{n}^{\prime}, then $\sum a_{n}$ or the sequence $\left\{s_{n}\right\}$ is said to be summable by harmonic means, or summable (H), to the $\operatorname{sum} s$ if $\lim _{n \rightarrow \infty} t_{n}^{\prime}=s$.

If the method of summability $\left(N, p_{n}\right)$ be superimposed on the Cesàro means of order one, another method of summability $\left(N, p_{n}\right) \cdot C_{1}$, is obtained [1].
2. Let $f(x)$ be a periodic function with period 2π and integrable in the sense of Lebesgue over $(-\pi, \pi)$. Let the Fourier series of $f(x)$ be

$$
\begin{equation*}
\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)=\sum_{n=0}^{\infty} A_{n}(x), \tag{2.1}
\end{equation*}
$$

and its conjugate series is

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(b_{n} \cos n x-a_{n} \sin n x\right)=\sum_{n=1}^{\infty} B_{n}(x) . \tag{2.2}
\end{equation*}
$$

We write

$$
\begin{aligned}
\psi(t) & =f(x+t)-f(x-t)-l, \\
\Psi(t) & =\int_{0}^{t}|\psi(u)| d u, \\
p(1 / t) & =p_{\tau},
\end{aligned}
$$

and $\quad P(1 / t)=P_{\tau}$, where τ is the integral part of $1 / t$.
In 1959 Varshney [6] proved the following theorem.
Theorem. If

$$
\Psi(t)=\int_{0}^{t}|\psi(u)| d u=o\left[\frac{t}{\log 1 / t}\right],
$$

as $t \rightarrow+0$, then the sequence $\left\{n B_{n}(x)\right\}$ is summable $(N, 1 /(n+1)) \cdot C_{1}$ to the value l / π.

In this paper we prove two Theorems. In the first of these we show that even if this particular sequence $\{1 /(n+1)\}$ be replaced by a more general sequence $\left\{p_{n}\right\}$, the result will continue to hold true. In the second we give a more general condition for the $\left(N, p_{n}\right) \cdot C_{1}$ summability of the sequence $\left\{n B_{n}(x)\right\}$. In what follows $\left\{p_{n}\right\}$ is real, non-negative and non-increasing sequence such that $P_{n} \rightarrow \infty$ with n. We prove the following Theorems.
3. Theorem 1. If $\left(N, p_{n}\right)$ be a regular Nörlund method, defined by a real, non-negative, monotonic non-increasing sequence of constants $\left\{p_{n}\right\}$, such that $P_{n} \rightarrow \infty$, and

$$
\begin{equation*}
\sum_{k=a}^{n} P_{k} / k \log k=O\left(P_{n}\right), \tag{3.1}
\end{equation*}
$$

as $n \rightarrow \infty$, where a is a fixed positive integer; then, if

$$
\begin{equation*}
\Psi(t)=\int_{0}^{t}|\psi(u)| d u=o\left[\frac{t}{\log 1 / t}\right], \tag{3.2}
\end{equation*}
$$

as $t \rightarrow+0$, the sequence $\left\{n B_{n}(x)\right\}$ is summable $\left(N, p_{n}\right) \cdot C_{1}$, to the value l / π.

Theorem 2. If $\left(N, p_{n}\right)$ be a regular Nörlund method defined by a real non-negative and non-increasing sequence such that $P_{n} \rightarrow \infty$ with n and if

$$
\begin{equation*}
\Psi(t)=\int_{0}^{t}|\psi(u)| d u=0\left[\frac{p(1 / t)}{P(1 / t)}\right], \tag{3.3}
\end{equation*}
$$

as $t \rightarrow+0$, then the sequence $\left\{n B_{n}(x)\right\}$ is summable $\left(N, p_{n}\right) \cdot C_{1}$ to the value l / π.
4. We require the following lemmas to prove our Theorems.

Lemma 1. [2]. (i). For $0<t \leq \pi$, and for any n, a and b,

$$
\left|\sum_{a}^{b} p_{k} e^{i(n-k) t}\right|<A P(1 / t),
$$

where A is an absolute constant, and
(ii)

$$
\frac{1}{t} p(1 / t) \leq P(1 / t) .
$$

Lemma 2. For $0 \leq t \leq 1 / n$,

$$
\begin{aligned}
\left|Q_{n}(t)\right| & \equiv\left|\frac{1}{\pi P_{n}} \sum_{k=1}^{n} p_{n-k}\left(\frac{\sin k t}{k t^{2}}-\frac{\cos k t}{t}\right)\right| \\
& =O(n) .
\end{aligned}
$$

Proof.

$$
\begin{aligned}
\left|Q_{n}(t)\right| & =O\left[\frac{1}{P_{n}} \sum_{k=1}^{n} p_{n-k}\left(k^{2} t\right)\right] \\
& =O\left[\frac{n}{P_{n}} \sum_{k=1}^{n} \dot{p}_{n-k}\right] \\
& =O(n) .
\end{aligned}
$$

Lemma 3. For $0<t \leq \pi$,

$$
\left|Q_{n}(t)\right|=O\left[\frac{P(1 / t)}{t P_{n}}\right]
$$

Proof. By lemma 1(i) and Abel's transformation, we have

$$
\begin{aligned}
\left|Q_{n}(t)\right|= & O\left[\frac{1}{P_{n}}\left|\sum_{k=1}^{n} p_{n-k} \frac{\sin k t}{k t^{2}}\right|\right]+O\left[\frac{P(1 / t)}{t P_{n}}\right] \\
= & O\left[\frac{1}{t P_{n}}\left|\sum_{k=0}^{\tau} p_{k} \frac{\sin (n-k) t}{(n-k) t}\right|\right]+O\left[\frac{1}{t P_{n}}\left|\sum_{k=\tau+1}^{n-1} p_{k} \frac{\sin (n-k) t}{(n-k) t}\right|\right] \\
& +O\left[\frac{P(1 / t)}{t P_{n}}\right] \\
= & O\left[\frac{1}{t P_{n}} \sum_{k=0}^{\tau} p_{k}\right]+O\left[\frac{1}{t P_{n}}\left\{\frac{1}{t} \sum_{k=\tau+1}^{n-2}\left|\Delta p_{k}\right|\right\}\right] \\
& \quad+O\left[\frac{p_{n-1}}{t^{2} P_{n}}\right]+O\left[\frac{p_{\tau+1}}{t^{2} P_{n}}\right]+O\left[\frac{P(1 / t)}{t P_{n}}\right] \\
= & O\left[\frac{P(1 / t)}{t P_{n}}\right]
\end{aligned}
$$

by Lemma 1 (ii) and since $\left|\sum \sin k t / k\right| \leq \frac{1}{2} \pi+1$ [5].
4. Proof of Theorem 1. Let $\sigma_{n}(x)$ be the $(C, 1)$ transform of the sequence $\left\{n B_{n}(x)\right\}$, then after Mohanty and Nanda [3], we have

$$
\begin{align*}
\sigma_{n}(x)-l / \pi= & \frac{1}{n} \sum_{r=1}^{n} r B_{r}(x)-l / \pi \\
= & \frac{1}{n} \int_{0}^{\pi} \psi(t)\left(\frac{\sin n t}{4 n \sin ^{2} \frac{1}{2} t}-\frac{\cos n t}{2 \tan \frac{1}{2} t}\right) \cdot d t \\
& \quad+\frac{1}{2 \pi} \int_{0}^{\pi} \psi(t) \sin n t d t+o(1) \\
= & \frac{1}{\pi} \int_{0}^{\pi} \psi(t)\left[\frac{\sin n t}{n t^{2}}-\frac{\cos n t}{t}\right] d t+o(1) \tag{4.1}
\end{align*}
$$

by Riemann-Lebesgue theorem.
On account of the regularity of the method of summability, we have to show that under our assumptions

$$
\begin{equation*}
\int_{0}^{\pi} \psi(t) \frac{1}{\pi P_{n}} \sum_{k=1}^{n} p_{n-k}\left[\frac{\sin k t}{k t^{2}}-\frac{\cos k t}{t}\right] d t=o(1) \tag{4.2}
\end{equation*}
$$

as $n \rightarrow \infty$.
We set

$$
\begin{align*}
I & =\int_{0}^{\pi} \psi(t) \frac{1}{\pi P_{n}} \sum_{k=1}^{n} p_{n-k}\left[\frac{\sin k t}{k t^{2}}-\frac{\cos k t}{t}\right] d t \\
& =\int_{0}^{\pi} \psi(t) Q_{n}(t) d t \\
& =\left(\int_{0}^{1 / n}+\int_{1 / n}^{\delta}+\int_{\delta}^{\pi}\right) \psi(t) Q_{n}(t) d t \\
& =I_{1}+I_{2}+I_{3} \tag{4.3}
\end{align*}
$$

Now, by Lemma 2,

$$
\begin{align*}
I_{1} & =O\left[\int_{0}^{1 / n}|\psi(t)|\left|Q_{n}(t)\right| d t\right] \\
& =O[n \Psi(1 / n)] \\
& =o\left[\frac{n}{n \log n}\right] \\
& =o(1), \text { as } n \rightarrow \infty . \tag{4.4}
\end{align*}
$$

Again, by Lemma 3,

$$
\begin{aligned}
I_{2}= & O\left[\int_{1 / n}^{\delta}|\psi(t)| \frac{P(1 / t)}{t P_{n}} d t\right] \\
= & O\left[\frac{1}{P_{n}}\left\{\Psi(t) \frac{P(1 / t)}{t}\right\}_{1 / n}^{\delta}\right] \\
& +O\left[\frac{1}{P_{n}} \int_{1 / n}^{\delta} \frac{\Psi(t) P(1 / t)}{t^{2}} d t\right]+o(1) \\
= & o(1)+o\left[\frac{1}{P_{n}}\left\{\frac{P(1 / t)}{\log 1 / t}\right\}_{1 / n}^{\delta}\right]+o\left[\frac{1}{P_{n}} \int_{1 / n}^{\delta} \frac{P(1 / t)}{t \log 1 / t} d t\right] \\
= & o(1)+o\left[\frac{1}{P_{n}} \int_{\frac{1}{\grave{o}}+1}^{n} \frac{P(x)}{x \log x} d x\right], \\
= & o(1)+o\left[\frac{1}{P_{n}} \sum_{[1 / \delta]+1}^{n} \frac{P_{k}}{k \log k}\right] \\
= & o(1) .
\end{aligned}
$$

Since the method of summation is regular, we have

$$
\begin{equation*}
I_{3}=o(1), \tag{4.6}
\end{equation*}
$$

as $n \rightarrow \infty$, by Riemann-Lebesgue theorem.
This completes the proof of the Theorem 1.
Proof of Theorem 2. Here also we have to show that, under the condition (3.3),

$$
I=o(1) .
$$

By Lemma 2 and hypothesis (3.3)

$$
\begin{align*}
I_{1} & =O[n \Psi(1 / n)] \\
& =o\left[n p_{n} / P_{n}\right] \\
& =o(1), \tag{4.7}
\end{align*}
$$

since $n p_{n} \leq P_{n}$.
Again, by Lemma 3,

$$
\begin{aligned}
I_{2}= & O\left[\int_{1 / n}^{\delta}|\psi(t)| \frac{P(1 / t)}{t P_{n}} d t\right] \\
= & O\left[\frac{1}{P_{n}}\left\{\Psi(t) \frac{P(1 / t)}{t}\right\}_{1 / n}^{\delta}\right] \\
& +O\left[\frac{1}{P_{n}} \int_{1 / n}^{\delta} \frac{\Psi(t) P(1 / t)}{t^{2}} d t\right]+o(1) \\
= & o(1)+o\left[\frac{1}{P_{n}}\left\{\frac{p(1 / t)}{t}\right\}_{1 / n}^{\delta}\right]+o\left[\frac{1}{P_{n}} \int_{1 / n}^{\delta} \frac{p(1 / t)}{t^{2}} d t\right] \\
= & o(1)+o\left[\frac{1}{P_{n}} \int_{1 / \delta}^{n} p(x) d x\right] \\
= & o(1) .
\end{aligned}
$$

Since the method of summation is regular, we have

$$
\begin{equation*}
I_{3}=o(1), \tag{4.9}
\end{equation*}
$$

as $n \rightarrow \infty$, by Riemann-Lebesgue theorem.
This proves the Theorem 2.
I am very much indebted to Professor B. N. Prasad for his kind interest and advice in the preparation of this paper.

References

[1] Astrachan, Max: Studies in the summability of Fourier series by Nörlund means, Duke Math. Jour., 2, 543-558 (1936).
[2] McFadden, L.: Absolute Nörlund summability, Duke Math. Jour., 9, 168-207 (1942).
[3] Mohanty, R. and Nanda, M.: On the behaviour of Fourier coefficients, Proc. Amer. Math. Soc., 5, 79-84 (1954).
[4] Riesz, M.: Sur l'equivalence de certaines methodes de sommation, Proc. Lond. Math. Soc., (2), 22, 412-419 (1924).
[5] Titchmarsh, E. C.: Theory of Functions, Oxford, 440 (1949).
[6] Varshney, O. P.: On a sequence of Fourier coefficients, Proc. Amer. Math. Soc., 10, 790-795 (1959).

