130. On an Example of Non-uniqueness of Solutions of the Cauchy Problem for the Wave Equation

By Hitoshi Kumano-go
Department of Mathematics, Osaka University
(Comm. by Kinjirô Kunugi, m.J.A., Oct. 12, 1963)

1. Introduction. In the recent note [4] F. John has constructed the following example: For any positive integer m there exists a solution of the wave equation $\square u=\left(\partial^{2} / \partial x^{2}+\partial^{2} / \partial y^{2}-\partial^{2} / \partial t^{2}\right) u=0$, which is analytic in a cyrindrical domain $\mathscr{D}=\left\{(x, y, t) ; x^{2}+y^{2}<1\right\}$ and belongs to C^{m} in R^{3} not C^{m+2} in the neighborhood of any point outside \mathscr{D}.

The purpose of this note is to construct real valued functions u, f and g which belong to \mathscr{B} and satisfy the equation $L u \equiv(\square+f$ $\partial / \partial t+g) u=0$ in R^{3}, where the support of u equals to the set $R^{3}-\mathscr{D}$.

What is remarkable is that the cylinder $S=\left\{(x, y, t) ; x^{2}+y^{2}=1\right\}$ is non-characteristic for L. Hence this example shows that for the operator L the uniqueness of solutions of the Cauchy problem for the non-characteristic surface S does not hold. But we must remark that any solution for the equation with the principal part \square, which has its support in a 'strictly convex set' at a point of a time-like plane, vanishes identically in a neighborhood of that point (see [5]).

Many examples of non-uniqueness have been constructed by A. Pliś [6] and [7], P. Cohen [1] etc., and L. Hörmander has proved in the general theory that the uniqueness for an operator with the principal part \square does not hold even for a time-like plane if we admit complex valued coefficients (see [3] p. 228). But our example is interesting in the physical meaning and we can take $f=0$ if we admit complex valued g and u.

We shall construct this by the method of A. Plis [7], using the asymptotic expansion of Bessel functions $J_{\lambda}(\lambda a)$ in the interval (0 , $\left.1-\lambda^{-2 \rho / 5}\right]$ for a fixed $\rho(0<\rho<1)$.
2. Lemma 1. Let $J_{\lambda}(a)$ be Bessel functions of order $\lambda>0$. Then, for any fixed $\rho(0<\rho<1)$ we have the following asymptotic formula:

$$
\begin{align*}
J_{\lambda}(\lambda \alpha)=(2 \pi \lambda \tanh \alpha)^{-1 / 2} & \exp \{\lambda(\tanh \alpha-\alpha)\}\left(1+0\left(\lambda^{-1 / 5}\right)\right) \tag{1}\\
& \left(0<\alpha<1, \cosh \alpha=a^{-1}, \alpha>0\right)
\end{align*}
$$

which is valid uniformly for every a in $\left(0,1-\lambda^{-2 \rho / 5}\right]$.
Proof. First of all we remark
(2) $\quad 1 \geqq \tanh \alpha=\sqrt{1-a^{2}} \geqq \lambda^{-\rho / 5}$ in $0<a \leqq 1-\lambda^{-2 \rho / 5}$.

We shall use a well-known integral representation of Bessel functions (see [2] p. 412):

$$
J_{\lambda}(\lambda a)=\frac{1}{2 \pi} \int_{\Gamma_{0}} \exp \{\lambda(-i a \sin \zeta+i \zeta)\} d \zeta(\zeta=u+i v)
$$

where Γ_{0} consists of three sides of a rectangle with vertices at $-\pi+i \infty,-\pi, \pi$ and $\pi+i \infty$, and is oriented from $-\pi+i \infty$ to $\pi+i \infty$.

Setting $f(\zeta)=-i a \sin \zeta+i \zeta$ we have $f(\zeta)=(a \cos u \sinh v-v)$ $+i(u-a \sin u \cosh v)$. It is clear that we can deform Γ_{0} to a curve defined by $\Gamma: u-a \sin u \cosh v=0$ without varing the values of $J_{\lambda}(\lambda a)$. Then we have

$$
J_{\lambda}(\lambda a)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \exp \{\lambda g(u)\} d u
$$

where $g(u)$ is defined by

$$
\begin{aligned}
& g(u)=a \cos u \sinh v-v \\
& (\cosh v(u)=u /(\alpha \sin u)(u \neq 0) \text { and } v(0)=\alpha) .
\end{aligned}
$$

First we evaluate $g(u)$ in $-\lambda^{-2 / 5} \leqq u \leqq \lambda^{-2 / 5}$. Since

$$
\begin{aligned}
\left|\frac{d v(u)}{d u}\right| & =\left|\frac{1}{\sinh v}\left(\frac{u}{a \sin u}\right)\right| \leqq \frac{1}{\sqrt{u^{2} /(a \sin u)^{2}-1}} \cdot \frac{C|u|}{a} \\
& \leqq C|u| / \sqrt{1-a^{2}} \leqq C \lambda^{-(2-\rho) / 5} \text { by }(2),
\end{aligned}
$$

we have $|v-\alpha| \leqq C \lambda^{-(2-\rho) / 5}|u| \leqq C \lambda^{-(4-\rho) / 5}$ in $-\lambda^{-2 / 5} \leqq u \leqq \lambda^{-2 / 5}$. Hence by Taylor expansion

$$
\begin{aligned}
f(u+i v)= & f(i \alpha)+\{u+i(v-\alpha)\} f^{\prime}(i \alpha)+\{u+i(v-\alpha)\}^{2} f^{\prime \prime}(i \alpha) / 2 \\
& +\frac{1}{2}\{u+i(v-\alpha)\}^{3} \int_{0}^{1}(1-\theta)^{2} f^{\prime \prime \prime}(i \alpha+\theta\{u+i(v-\alpha)\} d \theta,
\end{aligned}
$$

we have
(3)

$$
g(u)=f(u+i v(u))=(\tanh \alpha-\alpha)-u^{2} \tanh \alpha / 2+0\left(\lambda^{-6 / 5}\right) .
$$

Here we must remark $f^{\prime}(i \alpha)=0$ and $\left|f^{\prime \prime \prime}(i \alpha+\theta\{u+i(v-\alpha)\})\right| \leqq 2$.
Consequently we have

$$
\begin{aligned}
\int_{-\lambda^{-2 / 5}}^{\lambda^{-2 / 5}} \exp \{\lambda g(u)\} d u= & \exp \{\lambda(\tanh \alpha-\alpha)\} \\
& \times \int_{-\lambda^{-2 / 5}}^{\lambda^{-2 / 5}} \exp \left\{-\frac{\lambda}{2} u^{2} \tanh \alpha\right\} d u\left(1+0\left(\lambda^{-1 / 5}\right)\right) \\
= & \exp \{\lambda(\tanh \alpha-\alpha)\} \frac{1}{\sqrt{\lambda \tanh \alpha}}\left[\int_{-\infty}^{\infty} \exp \left\{-\frac{w^{2}}{2}\right\} d w\right. \\
& \left.\left.-\int_{-\infty}^{-\lambda^{1 / 10} \sqrt{\tanh \alpha}}+\int_{\lambda^{1 / 10} \sqrt{\sqrt{\tanh \alpha}}}^{\infty}\right\} \exp \left\{-\frac{w^{2}}{2}\right\} d w\right]\left(1+0\left(\lambda^{-1 / 5}\right)\right) .
\end{aligned}
$$

Remarking $\lambda^{1 / 10} \sqrt{\tanh \alpha} \geqq \lambda^{1 / 10-\rho / 10}=\lambda^{(1-\rho) / 10}$ by (2), we get

$$
\frac{1}{2 \pi} \int_{-\lambda^{-2 / 5}}^{\lambda^{-2 / 5}} \exp \{\lambda g(u)\} d u=(2 \pi \lambda \tanh \alpha)^{-1 / 2} \exp \{\lambda(\tanh \alpha-\alpha)\}\left(1+0\left(\lambda^{-1 / 5}\right)\right) .
$$

Since $g^{\prime}(u) \gtrless 0$ in $0 \lessgtr u \lessgtr \pm \pi$ by easy computation, we have $g(u)$ $\leqq \operatorname{Max}\left\{g\left(\lambda^{-2 / 5}\right), g\left(-\lambda^{-2 / 5}\right)\right\}$, and by (3) and $\lambda^{-4 / 5} \tanh \alpha \geqq \lambda^{-(4+\rho) / 2}$ we have

$$
\begin{aligned}
\left\{\int_{-\pi}^{-\lambda^{-2 / 5}}+\int_{\lambda^{-2 / 5}}^{\pi}\right\} \exp \{\lambda g(u)\} d u=0 \cdot \exp \{\lambda(\tanh \alpha-\alpha)\} \exp \left\{-\lambda^{(1-\rho) / 5} / 3\right\} \\
=0\left(\lambda^{-1 / 5}\right)(2 \pi \lambda \tanh \alpha)^{-1 / 2} \exp \{\lambda(\tanh \alpha-\alpha)\} .
\end{aligned}
$$

Lemma 2. Consider $G_{m}(r)=J_{m^{6}}\left(m^{6} r\right)$ in the interval $1-M m^{-2}$ $\leqq r \leqq 1-m^{-2}$ with any fixed constant $M>1$. Then we have

$$
\begin{array}{r}
G_{m}(r)=(1+o(1))\left(2 \pi^{2} l\right)^{-1 / 4} m^{-5 / 2} \exp \left\{(1+o(1)) 2 \sqrt{2} / 3 \cdot l^{3 / 2} m^{3}\right\} \tag{4}\\
\left(r=1-l m^{-2}\right) .
\end{array}
$$

Remark: It is essential in the following discussion that the exponent of l is larger than 1 .

Proof. In (1) we set $\lambda=m^{6}$ and $\rho=5 / 6$, then we have
(5) $\quad G_{m}(r)=(2 \pi)^{-1 / 2}\left(1-r^{2}\right)^{-1 / 4} m^{-3}\left\{\frac{r \exp \left(\sqrt{1-r^{2}}\right)}{1+\sqrt{1-r^{2}}}\right\}^{m^{6}}(1+o(1))$

$$
\left(0<r \leqq 1-m^{-2}\right)
$$

Set $f(r)=r\left(r+\sqrt{1-r^{2}}\right)^{-1} \exp \left(\sqrt{1-r^{2}}\right)$. Then, as $f^{\prime}(r)=r^{-2}\left(1-\sqrt{1-r^{2}}\right)$ $\sqrt{1-r^{2}} \exp \left(\sqrt{1-r^{2}}\right)=(1+o(1)) \sqrt{2} \sqrt{1-r}$ in $1-M m^{-2} \leqq r \leqq 1$, we have

$$
f(r)=1-\sqrt{2}(1+o(1)) \int_{r}^{1} \sqrt{1-r} d r=(1+o(1)) 2 \sqrt{2} / 3 \cdot(1-r)^{3 / 2}
$$

Hence, for $r=1-l m^{-2}(1 \leqq l \leqq M)$ we have by (5)

$$
\begin{aligned}
G_{m}(r) & =(1+o(1))\left(2 \pi^{2} l\right)^{-1 / 4} m^{-5 / 2}\left\{1-(1+o(1)) 2 \sqrt{2} / 3 \cdot l^{3 / 2} m^{-3}\right\}^{m^{6}} \\
& =(1+o(1))\left(2 \pi^{2} l\right)^{-1 / 4} m^{-5 / 2}(e+o(1))^{-(1+o(1)) 2 \sqrt{2} / 3 \cdot l^{3 / 2} m^{3}},
\end{aligned}
$$

and get (4).
Q.E.D.

Lemma 3. Set $F_{m}(r)=G_{m}\left(m^{-1}(m-1) r\right)$ and $r_{m}(s)=1+m^{-1}-s m^{-1}$ $(m+1)^{-1}(0 \leqq s \leqq 1)$. Then $F_{m}(r)$ satisfy differential equations

$$
\begin{equation*}
F_{m}^{\prime \prime}(r)+r^{-1} F_{m}^{\prime}(r)-\left(m^{6} r^{-2}-m^{4}(m-1)^{2}\right) F_{m}(r)=0 \tag{6}
\end{equation*}
$$

and

$$
\begin{align*}
F_{m}\left(r_{m}(s)\right)= & (1+o(1))\left(2 \pi^{2}(1+s)\right)^{-1 / 4} m^{-5 / 2} \tag{7}\\
& \times \exp \left\{(1+o(1)) 2 \sqrt{2} / 3 \cdot(1+s)^{3 / 2} m^{3}\right\} \quad(0 \leqq s \leqq 1) .
\end{align*}
$$

Furthermore, if we determine γ_{m+1} such as

$$
\begin{align*}
\gamma_{m+1} F_{m+1}\left(r_{m+1}\left(2^{-1}\right)\right) & =F_{m}\left(r_{m+1}\left(2^{-1}\right)\right) \tag{8}\\
\left(r_{m}(s)\right. & \left.=1+m^{-1}-s m^{-1}(m+1)^{-1}, 0 \leqq s \leqq 1\right)
\end{align*}
$$

then we have

$$
\begin{equation*}
\gamma_{m+1} \leqq \exp \left\{-m^{3}\right\} \tag{9}
\end{equation*}
$$

and

$$
\left\{\begin{array}{lll}
\text { i) } & \gamma_{m+1} F_{m+1}\left(r_{m+1}(s)\right) \leqq C \exp \left\{-m^{3} / 15\right\} F_{m}\left(r_{m+1}(s)\right) & (0 \leqq s \leqq 1 / 4) \tag{10}\\
\text { ii) } & F_{m}\left(r_{m+1}(s)\right) \leqq C \exp \left\{-m^{3} / 15\right\} \gamma_{m+1} F_{m+1}\left(r_{m+1}(s)\right) & (3 / 4 \leqq s \leqq 1)
\end{array}\right.
$$

for sufficiently large m.
Proof. (6) is clear, and because of $m^{-1}(m-1) r_{m}(s)=1-(1+s+0$ $\left.\left(m^{-1}\right)\right) m^{-2}$ we get (7) by (4).

Since $F_{m}\left(r_{m+1}(s)\right)=F_{m}\left(r_{m}\left(1+s+0\left(m^{-1}\right)\right)\right)$, applying the mean value theorem such as $x^{3 / 2}-y^{3 / 2}=3 / 2 \cdot \sqrt{\theta}(x-y)(x \lessgtr \theta \lessgtr y)$ we get (9) by (7), and writing
$\frac{F_{m}\left(r_{m+1}(s)\right)}{\gamma_{m+1} F_{m+1}\left(r_{m+1}(s)\right)}=\frac{F_{m}\left(r_{m+1}(s)\right)}{F_{m}\left(r_{m+1}\left(2^{-1}\right)\right)} \cdot \frac{F_{m}\left(r_{m+1}\left(2^{-1}\right)\right)}{\gamma_{m+1} F_{m+1}\left(r_{m+1}\left(2^{-1}\right)\right)} \cdot \frac{\gamma_{m+1} F_{m+1}\left(r_{m+1}\left(2^{-1}\right)\right)}{\gamma_{m+1} F_{m+1}\left(r_{m+1}(s)\right)}$ we get (10).
3. Theorem. There exist real valued functions u_{0}, f_{0} and g_{0}
of class \mathscr{B} in R^{3} which satisfy the equation

$$
\begin{equation*}
\square\left[u_{0}\right]=\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}-\frac{\partial^{2}}{\partial t^{2}}\right) u_{0}=\left(f_{0} \frac{\partial}{\partial t}+g_{0}\right) u_{0}, \tag{11}
\end{equation*}
$$

where supp $u_{0}{ }^{1)}$ equals to $R^{3}-\mathscr{D}\left(\mathscr{D}=\left\{(x, y, t) ; x^{2}+y^{2}<1\right\}\right)$.
Proof. Set $u_{m}(r, \theta, t)=F_{m}(r) \cos \left(m^{6} \theta+m^{4}(m-1)^{2} t\right) \quad(r>1)$.
Then, by (6) we have

$$
L\left[u_{m}\right] \equiv\left(\partial^{2} / \partial r^{2}+r^{-1} \partial / \partial r+r^{-2} \partial^{2} / \partial \theta^{2}-\partial^{2} / \partial t^{2}\right) u_{m}=0 .
$$

Take functions $A(r)$ and $A_{m}(r) \in C_{(0, \infty)}^{\infty}$ such that

$$
A(r)=\left\{\begin{array}{l}
1 \text { in a nbd. }{ }^{2)} \text { of }[1 / 8,7 / 8] \\
0 \text { in a nbd. of }[1, \infty),
\end{array}\right.
$$

and for sufficiently large $M>1$ to be fixed later

$$
A_{M}(r)=\left\{\begin{array}{l}
0 \text { for } r \leqq 1+(M+2)^{-1} \tag{12}\\
1 \text { for } r \geqq 1+(M+2)^{-1}+1 / 4 \cdot(M+1)^{-1}(M+2)^{-1} .
\end{array}\right.
$$

Set $A_{m}(r)=A\left(m^{2} / 2 \cdot\left\{r-\left(1+m^{-1}\right)\right\}+1\right) \quad(m>M)$.
Then, we have for sufficiently large m

$$
A_{m}(r)=\left\{\begin{array}{l}
1 \text { in a nbd. of }\left(I_{m+1}-I_{m+1,4}\right) \smile\left(I_{m}-I_{m, 1}\right)^{3)} \tag{13}\\
0 \text { in }\left(0,1+(m+1)^{-1}\right] \smile\left(1+m^{-1}, \infty\right) .
\end{array}\right.
$$

Now we define $u(r, \theta, t) \in C_{(r>1)}^{\infty}$ by

$$
\begin{equation*}
u(r, \theta, t)=A_{M}(r) u_{M}+\sum_{m=M+1}^{\infty} \gamma_{M+1} \cdots \cdots \gamma_{m} A_{m}(r) u_{m} \tag{14}
\end{equation*}
$$

with γ_{m} defined by (8), and set

$$
\left\{\begin{array}{l}
\left.f=g=0 \text { in } K=\left[1+(M+1)^{-1}, \infty\right)^{\smile} \bigcup_{m=M+1}^{\infty}\left(I_{m, 2} \smile_{m, 3}\right)\right\} \tag{15}\\
f=L[u] \frac{u_{1 t}}{u^{2}+u_{1 t}^{2}} \text { and } g=L[u] \frac{u}{u^{2}+u_{\mid t}^{2}} \text { in } K^{c, 4)}
\end{array}\right.
$$

where $u_{1 t}=\partial / \partial t u$ and $K^{c}=$ the complement of K in $(1, \infty)$.
By the recursion formula of Bessel functions

$$
\begin{equation*}
2 J_{\lambda}^{\prime}=J_{\lambda-1}+J_{\lambda+1} \tag{16}
\end{equation*}
$$

and (7), we have for $1+(m+2)^{-1} \leqq r \leqq 1+m^{-1}$
$\left|d^{k} / d r^{k} F_{m}(r)\right| \leqq C_{k} \exp \left\{o\left(m^{3}\right)\right\} F_{m}(r)$.
Hence, for $1+(m+2)^{-1} \leqq r \leqq 1+(m+1)^{-1}(m \geqq M)$, we have by (7) and
(17) $\quad\left|D^{k} u\right|^{5)} \leqq C_{k} \gamma_{M+1} \cdots \cdot \gamma_{m} m^{6 k}\left(F_{m}+\gamma_{m+1} F_{m+1}\right) \exp \left\{0\left(m^{3}\right)\right\}$.

As $\gamma_{M+1} \bullet \cdots \cdot \gamma_{m} \leqq \exp \left\{-m^{4} / 5+C_{1} M^{4}\right\}$ by (9), remarking $1+(m+2)^{-1}$ $\leqq r \leqq 1+(m+1)^{-1}$ we get by (7).
(18) $\left|D^{k} u\right| \leqq C_{k} \exp \left\{-C_{2} m^{4}\right\} \leqq C_{k} \exp \left\{-C_{2}(r-1)^{-4} / 16\right\} \rightarrow 0(r \searrow 1)$.

1) $\operatorname{supp} u=$ the closure of $\{(x, y, t) ; u(x, y, t) \neq 0\}$.
2) 'nbd.' is the abbreviation of 'neighborhood'.
3) $I_{m}=\left[1+(m+1)^{-1}, 1+m^{-1}\right]$ and $I_{m, k}=\left[1+m^{-1}-k / 4 \cdot m^{-1}(m+1)^{-1}, 1+m^{-1}-(k-1) / 4 \cdot m^{-1}(m+1)^{-1}\right] \quad(k=1, \cdots, 4)$.
4) If we admit complex valued coefficients, taking

$$
u_{m}(r, \theta, t)=F_{m}(r) \exp \left\{\sqrt{-1}\left(m^{6} \theta+m^{4}(m-1)^{2} t\right)\right\}, f=0 \text { and } g=L[u] / u
$$ we can continue the similar discussion.

5) $\left|D^{k} u\right|=\left\{\sum_{i+j+l=k}\left|\frac{\partial^{k}}{\partial r^{i} \partial \theta^{j} \partial t^{l}} u\right|^{2}\right\}^{1 / 2}$.

Now, consider $u^{2}+u_{1 t}^{2}$ in $I_{m+1,1}$ for $m \geqq M$. Since

$$
\begin{aligned}
u^{2}+u_{t}^{2} & \geqq \gamma_{M+1}^{2} \cdots \cdots \cdot \gamma_{m}^{2}\left\{\left(u_{m}^{2}+u_{m \mid t}^{2}\right) / 2-\gamma_{m+1}^{2} A_{m+1}^{2}\left(u_{m+1}^{2}+u_{m+1 \mid t}^{2}\right)\right\} \\
& \geqq \gamma_{M+1}^{2} \cdots \cdots \cdot \gamma_{m}^{2}\left\{F_{m}(r)^{2} / 2-C_{3} m^{6} \gamma_{m+1}^{2} F_{m+1}(r)^{2}\right\},
\end{aligned}
$$

we have by i) of (10)

$$
\begin{equation*}
u^{2}+u_{1 t}^{2} \geqq 3^{-1} \gamma_{M+1}^{2} \cdots \cdots \gamma_{m}^{2} F_{m}(r)^{2}>0 \text { in } I_{m+1,1}, \tag{19}
\end{equation*}
$$

and so by ii) of (10) we have

$$
\begin{equation*}
u^{2}+u_{I t}^{2} \geqq 3^{-1} \gamma_{M+1}^{2} \cdots \cdot \gamma_{m}^{2} \gamma_{m+1}^{2} F_{m+1}(r)^{2}>0 \text { in } I_{m+1,4} . \tag{20}
\end{equation*}
$$

Hence, as $L[u]=0$ in a neighborhood of $I_{m+1,2} \smile I_{m+1,3}$, we have f and g are of class $C_{(r>1)}^{\infty}$. As $L[u]=L\left[\gamma_{M+1} \cdots \cdots \gamma_{m+1} A_{m+1} u_{m+1}\right]$ in $I_{m+1,1}$, we have by (16) and i) of (10)
(21)

$$
\left|D^{k} L[u]\right| \leqq C_{k+2} \gamma_{M+1} \cdots \cdots \cdot \gamma_{m+1} m^{6(k+2)} \exp \left\{o\left(m^{3}\right)\right\} F_{m+1}(r) .
$$

We can write

$$
\begin{aligned}
\left|D^{k} f\right| & \leqq\left|D^{k}\left\{L[u] \frac{u_{1 t}}{u^{2}+u_{\mid t}^{2}}\right\}\right| \\
& =\sum_{\substack{i_{1}+\ldots+i, i_{n}=2 k+1 \\
\nu \leqq(k+1)}} a_{i_{1} \cdots i_{\nu}} \frac{\left|D^{i_{1}} L[u]\right|}{\left(u^{2}+u_{\mid t}^{2}\right)^{1 / 2}} \times\left\{\frac{\left|D^{i_{2}} u\right|}{\left(u^{2}+u_{\mid t}^{2}\right)^{1 / 2}} \cdots \cdots \frac{\left|D^{i_{\nu}} u\right|}{\left(u^{2}+u_{\mid t}^{2}\right)^{1 / 2}}\right\} .
\end{aligned}
$$

Hence, by (17), (19), and (21) we have

$$
\left|D^{k} f\right| \leqq C_{k}^{\prime} m^{12(k+1)}\left\{\gamma_{m+1} F_{m+1}(r) / F_{m}(r)\right\} \exp \left\{o\left(m^{3}\right)\right\},
$$

and using i) of (10) we get in $I_{m+1,1}$
(22)

$$
\left|D^{k} f\right| \leqq C_{k}^{\prime \prime} \exp \left\{-m^{3} / 16\right\}
$$

By (17), (20) and ii) of (10) it is clear that we can get (22) in $I_{m+1,4}$ and further for g in $I_{m+1,1} \smile I_{m+1,4}$. Hence, for $1+(m+2)^{-1} \leqq r$ $\leqq 1+(m+1)^{-1}$ we get by (15)
(23) $\left|D^{k} f\right|,\left|D^{k} g\right| \leqq C_{k} \exp \left\{-m^{3} / 16\right\} \leqq C_{k} \exp \left\{-(r-1)^{3} / 16^{2}\right\} \rightarrow 0 \quad(r \searrow 1)$.

Now, we take the non-singular transformation:
$x=r \cos \theta, y=r \sin \theta(r>0)$. Then, L takes the form \square. If we define for a sufficiently large fixed $M, u_{0}=f_{o}=g_{0}=0$ in $\bar{D}=$ the closure of \mathscr{D} and $u_{0}=u, f_{0}=f$ and $g_{0}=g$ defined by (14) and (15) respectively in \mathscr{D}^{c} with $x=r \cos \theta, y=r \sin \theta$, then it is clear that u_{0}, f_{0} and g_{0} satisfy the desired conditions by the periodicity of u, f, g and (18), (23), and the boundedness of Bessel functions.
Q.E.D.

References

[1] P. Cohen: The non-uniqueness of the Cauchy problem, C.N.R. Techn. Report 93, Stanford (1960).
[2] R. Courant and D. Hilbert: Methoden der mathematischen Physik, vol. 1, Springer, Berlin (1937).
[3] L. Hörmander: Linear Partial Differential Operators, Springer, Berlin (1963).
[4] F. John: Continuous dependence on data for solutions of partial differential equations with a prescribed bound, Comm. Pure Appl. Math., 13, 551-585 (1960).
[5] L. Nirenberg: Uniqueness in the Cauchy problems for differential equations with constant leading coefficients, Comm. Pure Appl. Math., 10, 89-105 (1957).
[6] A. Plis: The problem of uniqueness for the solution of a system of partial differential equations, Bull. Acad. Polon. Sci., Cl. III, 2, 55-57 (1954).
[7] A. Pliś: A smooth linear elliptic differential equations without any solution in a sphere, Comm. Pure Appl. Math., 14, 599-617 (1961).

