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1o Introduction. The space which represents the state vectors
used in quantum field theory can be seen in 1, 2, and 3.

Haag, Grding, and Wightman have used the space L(F; m)con-
sisted of the square integrable functions on the set F of the infinite
nonnegative integer’s sequence with the measure m 1, 2.

For discrete measure m, it is called discrete representation, and
for continuous measure m, continuous representation.

In quantum field theory, these two representations are used.
We can easily show the necessity of this continuous representation

using the model by Van Hove and O. Miyatake 4, [_5, 6 which
is the scalar field with the interaction by the fixed point source.

Von Neumann has also constructed the infinite direct product
space to represent the state vectors which contain the spaces L(F; m)
for any m [3.

Now we have proposed to use the new space/10, 1 to construct
the space representing the state vectors 7.

The elements in //0, 1 are the sequences converging in //0, 1]
topology. For the classification by the uniformly equivalence, the set
of these classes has the same extend as the Von Neumann’s space.
For the classification by the equivalence in A, the set of these classes
contains discrete and continuous representations.

In this paper we select uniformly equivalent classes contained
in each // equivalent class, construct the pre-Hilbert space L and
divide it in the direct sum of two representations. We can also use
it for the clarification of the relation between the discrete and con-
tinuous energy momentum levels.

2. Some derived sequences from {p} in the space Az[O, 1].
Let L[O, 1] denote the set of all complex-valued, measurable and
square-integrable functions on the interval [0,1] with the Lebesgue
measure.

Let’s use the abbreviations

I]f ] (x)-- If(t) ] dtds, I]f ] (x)-- If(t) dtds.

In the set L0, 1], we introduce the topology such that the
sequence {n($)}((?n()eL20, l) is convergent in the sense of this topo-
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1ogy, if and only if the following eight sequences of the functions"

which are derived from the original {9(t)}, are uniformly convergent
on the interval 0, 1 7, where R/9(t) is the real positive part of
9n(t) etc.

Let A0, 1 denote the completed space of L[0, 1 in the topo-
logy 2. Let {9(t)} denote the convergent sequence of the functions

n(t) eLO, 1 in 2 topology. Let q)--eL{n(t)] denote a class of equi-
valent Cauchy sequences to [n(t)} in the topology 2. It is an element
of the space A0, 1 containing {n(t)].

Hereafter, we treat the following four sequences {F]R/](x)},
[I2[R_gnl2(X)}, {I2]+n[2(X)} {I2]_pn[2(X)}, but we only discuss the
sequence {IIR/I(x)} because we hav the same results about to
the other sequences.

Lemma 1. (1) The function lim I2lR/9n ](x) is right differen-
tiable and left differentiabte everywhere in the interval 0, 1.

(2) The functions D lim I]R/n](x) and D- lim I[R
are positive increasing.

3 D lim F[R/ I(x) >=D- lim Il R/, I(x) for all values of x

in the interval [0, 1.
4 D- lim I[R/ [(x) >__ D/ lim I]R/n I(x) for any pair x, x

such that 0 <= xz<x <= 1.
(5) D lim IIR/9 [(x) is differentiable almost everywhere in the

interval 0, 1, and is positive increasing.
Since lim I(IR/n]-(x)) is convex, Lemma I can be proved.

This lemma will be valid to define the discontinuous sum D(x;
R/) of the function D/(lim I]R/n [2(X))

Definition 1. We denote by D(x; R/qn) the function whose value
for x is the sum of the leaps of the function D/(lim I[R/gn](x))
in the interval _0, x.

Definition 2. We denote by CI R 9 12, DI R , the follow-
ing:

CIIR/9 1-- {D lim I2IR/ I(x)-- D(x; R//9n)} dx

DF R - D(x; R ) dx.

:3. The construction of the space L. The space//[0, 1 is not
a topological linear space (III in [8_). In this paragraph we show
that it contains a linear manifold L.
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Lemma 2. The functions CIIR/ 12, DIIR/ [2 do not depend

on the choice of the sequence [(t)) from the class q--CL[n(t)].
the other words, CI[R+?,[-CI]R+nl, DI]R+--DI[R+n,
.for any pair {(t)], {(t)] of the same class .

ProoL Since lira I]R+[(x)-lim IlR+,.(x) for any pair

[(t)], [(t)] in the same class it follows that D(x,R+n)--D(x,
R+n). So CI]R+-CI]R+[ and DI]R+w[--DIR+%

Definition 3. CI]R+ ]-CI]R+n ]2, DI]R+ i=DI]R+
Definition 4. I R+# ]-lim I R+9, [(x).
Definition 5. D(x; R ) D(x; R+9).
Lemma 3. (1)
(2) d/dx CI R # }(x) O in almost everywhere and

(d/dxCIlR+i2(x) is contained in the space

( a d/dx CI R # i(x) is a continuous function on the interval
[0, 1] and is divided into the following two parts

where x is a point in the set {x;D d/dx CI R (x)- + or

D-d/dx CI[R+[(x)= + ], Ai’)>0, lim A(’)--0 and lim

(4) D+{D(x; R+O)}- C(x) where 0 x 1 and C are real

numbers such that C+.
Proof. From the Definitions 1 and 2, we can see that the func-

tion d/dx CIR+O(x) is continuous. Then (1) is easily obtained.

Since the function d/dx CI]R+O](x) is monotone increasing and
continuous on the interval [0, 1, its derivative d/dx CI2JR+#(x)
is defined almost everywhere in the interval [0, 1. The derivative

d]dx CI]R+#[(x) has the following three properties:

a ) d/dx CI[R+# [(x) > 0.

(b) + >d/dx CI R I(x) d/dx CI R [(x) dx O.

fg( e ) {/ ZIR, ()- /ZIR,I()} is a monotone

increasing continuous function. (a) and (b) rove the roperty (2).

Since the strictly inereasing oint of the function ClaIR
1() g/gCIR,[()g belongs to the set

I() + or D-/ZIR,I()= + }, the funetion is expressed
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in the form lim,_ J( C")3(x))dx, and the coefficients c). satisfy the

conditions r>0, lim C-0 and lim <+. This prove the

property (3).
According to the Definitions 1, 5, D+{D(x;R+)}--C(x) and

k=l

+>D+I]R+]+oC. This proves the property (4).
k=l

Now we can derive the following

Definition 6. D(x; R+)--D(x; R+)+d/dx CI]R+(x)

--.]d/dx CI R+ ](x) dx.

We construct the linear manifold L such that for any class

of A0, 1 there exists some element of L which is the subset of

Let us select a sequence {} from for this purpose.
At the first step, let Pxon(X) be the following functions:

p/(x-- Xo) for 0 < x0< 1
2p/(X--Xo) for x--0, 1,

where 0xl, and p,(x) is the function defined by L. Schwartz.
rfAt the second step we define the sequence ,.(x)} of the

following functions:

E J3(k/2" +o; R+6)
where D(x--0; R+#)-0 for x<0. Similarly we construct the sequences

,_(x)}, {f,,(x)} and (x)}.
At the third step we define the sequence {f+y(x)} from the

following functions: ao,,,y(x)-()d/dxCI[R+](x). Similarly we
define the sequences ( () {fo, _(x)}. The{fe,

_
(x)}, {fe, ,(x)} and

sequence r() r() ir) r()
JC,-,_..+,$,+(x)--if:_(x)} is contained in 0. We denote this

sequence by {}. Let O denote an uniformly equivalent class of {} [7.
Definition 7. Let L denote the aggregate of all above

Lemma 4. The sequences [} selected from the class
have the following properties:

(1) is decomposed in the following form:

(n--l, 2,. ., k-l,. .2),
where g(x), for i- 1, 2, 3, 4 are non-negative functions in L[O, 1.

-(’ >= 0 and [lim< [< + for i=1, 2, 3, 4 and for all

A such that OA<I, and
(2) the carrier of the generalized function {lim C p/,,+o(X)}
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is contained in the set [x;Ig(x)l + oo} for i--1, 2, 3, 4 or an arbit-
rary countable point set.

Conversely, if the sequence {0} satisfies the conditions (1), (2),
then there exists a OeA[O, 1 such that [0,} is selected as the repre-

sentative of an element 0, 1 obeying the above process.
Theorem 1. The space L is a linear anifold.
Proof. Suppose that the sequences {}, {} are selected from

Since the inequalities

R+(+) R+ +R+ [ 2{ R+ [+ R+ }
R+(a)[2[a]2]R+[ etc. hold, and the sequences {,+2} and
{aVe,} have the properties (1) and (2) in Lemma 4, there exist the
classes in A2[0, 1 which contain the sequences {,+}, {a}.

So L is a linear manifold.

Definition 8. A set M in the space A2[0, 1 is called the mother
set in A20, 1], if

(i) any element in M contains an above sequence {].
(ii) any above sequence {] is contained in an element M.
The correspondence between the space M and the space L is one-

to-one. But the following example show that the correspondence
between the sace M and the sace A[0, 1 is not one-to-one.

xample. Let the sequences {)}, {} consist of the following
functions’ elements:

’- /.,+o(X) In
2n

e:)-E2.,,.+ o(x) lL- %/n_.+, +o(X) I.
In the space A[0, 1, {e2)}#[:)} but in the space L {F)}--{:)}.

4. Unified Representation. Since for any air of sequences
{e(t)}, [(t)} in eL and {(t)}, {,(t)} in

lira (,(t), e:(t)}-lim (e(t), (t)}
=lim ((t), e(t)} =lim (.(t), (t)}.

We can define the inner product between the element and in
L by (, }-([el(t), {(t)}}-lim ((t), e(t)}. We denote 9 the

space L with this inner product.
Let S denote the set constructed from the sequences

+ -,c; )%/, +10(x)}
k

with the properties (1) and (2) in Lemma 4.
Let X denote the set S with the topology introduced from
From the one-to-one correspondence between the convergent

sequences {k/2} (m=1,2,..., k-1,2,..., 2) and the points in the
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interval 0, 1, we obtain the following
Lemma 5 The pre-Hilbert space contains a non-separable

Hilbert space such that its bases are /(x) (0__<x__<l) as a component
of orthogonal direct sum. (It contains a discrete respresentation.)

Now we see the following
Theorem 2. 9 is the direct sum of the two spaces

=L0,1J(R).
Proof. Using the Schwartz inequality, the orthogonal relation

({fc, ..(x)--fc, ._(x)- ifc, /(x)--ifc, _(x)}, {f,R/y(x)--f.._y(x)
-if,y(x)--ify,.y(x)})--O holds for all and in L.

From Lemma 4 {fv,./y(x)--fc,./y(x)-ifc,y(x)--if,_y(x)} con-
struct the space L0, 1.

Here L0, 1 correspond to a continuous representation.
Hence is decomposed in the following form: 9--L0, lJ (Z and

2 has the properties in Lemma 5.

(This article is dedicated to professor Kunugi on the occasion of his 60th birthday.)
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