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Introduction. This note discusses the Cauchy problem for a class
of multicomponent diffusion systems of the form

u-f(, , u, v),1
v/t--g(x, t, u, V),

where x--(x,..., x) and A is a linear parabolic differential operator:

Au----Ou/Ot-- (x, t)Ou/OxOx+ b(x, t)Ou/Ox+c(x, t)u
=I

Let E denote the n-dimensional Euclidean x-space and H the
strip H=E’(0, T3, T>0, in the (n+l)-dimensional (x, t)-space.

By the Cauchy problem in question we mean the problem of

finding function pairs [u(x, t), v(x, t)} which are continuous in H,
satisfy the system (1) in H and take on the given initial values:
(2) u(x, 0)--(x) v(x, 0)--@(x), xeEn.

Our main concern in this note is with the comparison (1) and
the existence (2) of solutions of the problem (1)-(2), being suggested
by an elegant work of A. McNabb 1 on the first boundary value
problem for the system (1) in cylindrical domains,x)

Preliminary hypotheses. The following assumptions concerning
the system (1) will be made throughout the note:

1) The coecients a, b and c are defined and continuous in H;
2) At each point (x, t) eH and for all real n-tuples --(. ., $n),

( 3 a(x, t). >= ao , (a0: a positive constant);
,=1 =1

3) The functions f and g are defined in the domain -- {(x, t) e H,
c u c, o v o} and are subject to the conditions:

i) f is a non-decreasingfunction of v, while g is a non-decreasing

function of u;
ii) Both f and g are uniformly Lipschitz continuous relative

to u and v:
4 ) Ih(x, t, u, v)-h(x, t, , )l =< M(lu--l zr v--l),

for (x, t, u, v), (x, t, , )e9 with h=f or g.
1. Comparison theorems. To begin with, the following spaces

of function pairs {u(x, t}, v(x, t)} defined in H are introduced.

1) We also refer to the works of V. N. Maslennikova
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" the set of all function pairs {u, v}, the u-components of which
have continuous second -derivatives and continuous first t-derivatives

in H, while the -components of which are continuous with their first

S-derivatives in H.

" the set of those function pair {u, v}e, the u’s of which satisfy

the inequality u(x, ) 1<=m in H, m being a constant.

" the set of those function pairs [u,v}e, the u’s of which

satisfy the inequality ]u(x, t) l<= m(1+r) in , where r-----_(,= x)/-_ and

m and p are positive constants.
g" the set of those function pairs {u, v} e, the u’s of which satisfy

the inequality lu(x, t)]=<exp(/(l+r)), fl being a constantS0.
Thoerem 1. Suppose that the following inequalities are valid:)

( 5 ]ai(x, t) lg M(l-r2), Ibm(x, t)]<= M(l-r2)1/, c(x, t) <= i.
And suppose further that the function pairs [.ul, v},, {u2, v2} e 0I satisfy
the system of inequalities:

6 Aul--f(x, t, u, v)<=Au2--f(x, t, u2, v2),
3v/3t--g(x, t, ul, vl)<__3m/3t--g(x, t, u., v2), in H,

( 7 u(x, O) <= u2(x, 0), v(x, O) <= re(x, 0), x E.
Then, we conclude that

( 8 u(x, t)<= u.(x, t), v(x, t)<= v2(x, t) in H.
Proof. Define an auxiliary function pair {U, V} by

U(x, t)--u.(x, t)+(2m/r)(r+ Kt)e",
V(x, t)-m(x, t) +(2m/r)(r+Kt)e",

where K, r0 and a are positive constants.
An easy computation shows, in view of (6), that

A U--f(x, t, U, V) >=Au--f(x, t, u, v),
V/3t-- g(x, t, U, V) >= 3v/3t-- g(x, t, ul, v),

providing a >= (4n+3)M and K_>_ (4n-l-3)M. Now consider U, V} in
the cylinder Qo (r<=ro, O<_t<_ T). Since obviously U>__u on the normal
boundary of Q0 and V>=v on the lower basis of Qo, we may apply
McNabb’s theorem 1, Theorem 2, concluding therefore that
9 U(x, t)>= u(x, t), V(x, t)>= v(x, t) in Qo for all r0.

Any fixed point (x, t)H enters the cylinder Q0 for all sufficiently
large ro and at that point the inequalities (9) are valid. Letting ro
tend to infinity in (9) we obtain

t) >= u (x, t), t) > v (x, t),
thus completing the proof.

Remark. We note that in Theorem 1 the assumption that
{ui, v} ?; (i--1, 2) can be replaced by the requirement that they belong

2) Of course, the assumptions 1), 2), and 3) given in the introduction are tacitly made
in this and the subsequent theorems.
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to the class . To prove this, it is only necessary to introduce
another pair of functions

U(x, t) --u(x, t) + (4m/roq-)(r+ Kt)qe"’,
V(x, t) v(x, t) + (4m/roq-)(r + Kt)qe", 2q> p,

and to repeat the arguments employed there.
Theorem 2. In this theorem assume that

(10) a(x, t) <= M, b(x, t) <= M, c(x, t) <= i.
Let the function pairs [u, v], {.u, v} satisfy the system of inequa-
lilies (6)-(7). Then, the assertion of Theorem 1 also holds.

Proof. The auxiliary functions to be employed here are
U(x, t)-u.(x, t)+2 exp (2fl(1 +r)e"- fl(1 + r)),
V(x, t)-re(x, t) +2 exp (2fl(1 + r)e-fl(1 + r)).

A simple computation establishes that
A U--f(x, t, U, V)=Au--f(x, t, u, v),

3V/3t-- g(x, t, U, V) >= v/3t-- g(x, t, u, v)
for 0_<_ t_<_ 1/a if we take a-- 2M(4flne+n+2/fl).

If follows therefore, exactly as in the preceding proof, that
u.(x, t) >= u(x, t), re(x, t) >= v(x, t)

in the strip O<=t<__l/a. Continuing the same arguments for the strip

1/a<=t<=2/a, and then, for the strip 2[a<=t<=3/a, etc., we finally con-

clude that the desired inequalities (8) hold throughout H.
Remark. From each of the above theorems there results a uni-

queness theorem that insures the unicity of solutions of the Cauchy
problem (1)-(2) in the corresponding space of function pairs. We shall
not, however, give rather obvious statements of those uniqueness
theorems.

2. Existence theorem. Theorem 3. Let the following assump-
tions be made:

I) The coefficients a, b,, and c are bounded and uniformly

HSlder continuous (exponent 2) in relative to the parabolic metric

d(P, P-)--(]x--]+]t--l)/, where P--(x, t), --(, t-). Moreover,

a are uniformly H61der continuous (exponent ) in H relative to

the usual Euclidean metric p(P, )-( x-- l+ t--l)/.)
II) The functions f and g ave bounded and uniformly H61der

continuous (exponent 2) in H for each fixed value of {u, v].
III) The function (x) is bounded and H61der continuous (exponent

2) in E together with its second derivatives, while the function (x)
is bounded and HSlder continuous (exponent 2) in E.

Suppose further that there exist two pairs [, }, [_, _} of rune-
3) From now on, the HSlder continuity of functions of (x, t) is to be understood

in the sense of the parabolic metric.
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tions, bounded and uniformly H61der continuous (exponent ) in H
and satisfying the system of inequalities

A_--f(x, t, _, _)<__O<=A--f(x, t, , ),
(11)

_/t--g(x, t, _, _)<=O<=’/t--g(x, t, , ’),
(2) _(x, 0)<__(x)<__(x, o), _(x, o)<=(x)<(x, o).

Under these assumptions there exists a unique bounded solution
{u, v} of the Cauchy problem (1)-(2).

Proof. The existence-proof will be carried out with the aid of
the method of iterations as in McNabb’s paper. We proceed as follows.

a) The iteration scheme. Consider the sequence of function pairs
{un, vn} (n--l, 2...) defined by the equations

(13) AUn/l+Mun/l-- f(x, t, Un, Vn)-MUn,
3v i/3t-Mv 4. g(x, t, Un, Vn) + MVn;

(14) u,/(x,O)--(x), v/(x,O)--(x); u--q-, v--.
If u and Vn are known to be uniformly HSlder continuous with

exponent 2 in H, then so are the right hand sides of (13). From the
existence theorem on the Cauchy problem for linear parabolic equa-
tions (see, e.g., the reference 4) and from the famous theorem of
A. Friedman [5 it readily follows that the function u+ can be
determined uniquely and is uniformly HSlder continuous with the same

exponent in H. The existence and the HSlder continuity of v/ are
implied by the explicit formula

(15) eMtvn+(X, t)=(X)+ eM(g(x, T, Un, Vn)+ Mvn) dr.

b) The monotony of the sequences {u} and {Vn}, (n--l, 2,...).
An induction with the aid of the comparison theorems of 1

establishes that

(x, t) <= Un/ (X, t) <= U(X, t) <= (X, t),
(X, t) <= V/(X, t) <= V(X, t) <= (X, t), n-- 1, 2,....

We set u(x, t)--lira Un(X, t) and v(x, t)--lim Vn(X, t).

C) The HSlder continuity of u and v. Noting the uniform
boundedness of u and v, and using A. Friedman’s theorem, the uni-
form HSlder continuity of u can easily be verified. On the other hand,

that v is also uniformly HSlder continuous in H can be proven by
means of the integration formula (15) and a modification of the
arguments of A. McNabb.

d) Once the uniform HSlder continuity of u and v has been
established, we are now able to solve the system

4) If ]f(x,t, u, v)]<=A+Blu]+C]v], Ig(x,t,u,v)]_A’+B’lul+C’lvl, then =F=-_
=-_=ae satisfy (11) and (12) providing and 2 are taken large enough.
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Au +Mu f(x, t, u, v)+ Mu,
v/3t+My* g (x, , u, v) +My,
u(, 0)-(x), v(x, 0)-(x).

e) The identical coincidence: u(x, t)_u(x, t), v,(x, t)_v(x, t) in

H is easily concluded by considering the equations satisfied by u--u
and by V--Vn. It thus follows that the pair [u, v} is assuredly the
solution of our Cauchy problem (1)-(2). This completes the proof.
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