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1. Consider a semigroup S satisfying the following condition:
Any subset of S which contains a definite element e is a subsemi-
group of S.

A semigroup S is called a pB*-semigroup if S satisfies the above
condition.

For example semigroups of order 2, S-semigroups [4]" and Rédei’s
semigroups are all S*-semigroups, where by a Rédei’s semigroup we
mean a semigroup satisfying the condition that any non-empty subset
is a subsemigroup [2].?

2. Immediately we have that a homomorphic image of S is a
B*-semigroup and any subset of S which contains e is also a p*-
semigroup.

Putting now T={xeS; x*=x}, U={xeS; x*=¢, xx¢, ex=xe=c¢}, and
V={xeS; a*=e, xxe¢, ex=xe=x}, it follows that V has at most one
element and S=T7T+4U+V (disjoint class-sum).

We define a relation = as follows:

a~b means that at least one of a+b, a=b and a~b holds, provided
that a+b [a~b] means ab=a and ba=b [ab=>b and ba=a] for @, b in
T, a~b does ab=ba=e for a, b in S\T.*

Then we have the following lemmas.

Lemma 1. = is an equivalence relation defined in S.

Lemma 2. For any a, b in U, any ¢ in T and w in V

a=b, w#a (& denotes the negation of =), w#c¢ and a#c.

Lemma 3. If V=[1,” then e=a implies e=a.

Thus we have

Theorem 1. S can be represented as
S= 24 S.=>1S,+>S,+ > S, (disjoint class-sum)
ae ved,

1e4; ued,
where A=4,~4,—4,, 4,={o, ¢, v},
S, 2€4, [S,, ped,] is a maximal left [right] zero® subsemigroup
which contains no e,

1) The numbers in brackets refer to the references at the end of the paper.
2) See Theorem 50 in [2].

3) S\T means the set of all elements belonging to S but not to 7.

4) [ denotes the empty set.

5) A left [right] zero is a semigroup defined by zy=a[xy=y] for all z, y.
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S, is a maximal left or right zero subsemigroup which contains
e and especially S,={e} when S, 0,
S,=0 or {w},
S,=U.
3. Next, we define an ordering a=b meaning a=b, or aZLb, or
a%b, defined as follows:

a=b means either a=b or ab=ba=a,
aZlb [a%b] does ab=a and ba=e [ab=e and ba=a] for a=e,
bxe, axb.
It is easily shown that
Lemma 4. = is a partial ordering defined in S.
Lemma 5. For weS,, ueS,, and e
wzrZe=y=u implies x=e and y=e.
Define a=b meaning that ab=ba=e for azze, bxe, ab, and a+b
(# denotes the negation of ~). Then we have
Lemma 6. Let azb. Then
(i) e>a (> denotes that = and =) and e>b,
(ii) if there exists ¢ (<Ze) such that ¢>a and ¢>b, then c=e.
Lemma 7. Let b=c¢, bxe¢, and a#b. Then
(i) a>b implies a>¢,
(i) a=b [a2b] implies a2c [azc],
(iii) a=b implies azxc if b+e,
a*kc® if b~ec.
Lemma 8. Let byc [brc], bxc, and a#b. Then b%a [b%a] does
not occur and
(i) b>a implies ¢>a or cza [c%a] if e=b,
c>a if eab,
(ii) b?a [b%a] implies e=b and ¢>a or c%a [c?a].
Lemma 9. Let b~¢, bxc¢ and a#b. Then
b=a implies a*c.
Let S={S,}.cs and define = and % in S as follows:
S.=S; means S,=S; or x>y for every xzcS, and every yeS,,
S.%S, does x=y for every xS, and every yeS,.
By S.>S, we denotes that S.=S, and S.=5S;.
And, we define = (> or =) and % in 4 as follows:
a>f means S,>S;, a=p does S,=S; and a=*p8 does S.%S,.
Then it is easily shown that S is order isomorphic onto /4 under
a mapping S,~a. And we have
Theorem 2, A is a partially ordered set with respect to = which
contains a definite element ¢ and has the following properties:

6) =t denotes the negation of >.



630 M. SAsAKI Vol. 39,

(i) If wed, then for any ae A one and only one of a>¢, a=e
and e>a holds.

(ii) a>e¢ implies a>v and a>v implies a=e.

(iili) For any a(3¢, *v), B(xe¢, %v) in 4 one and only one of
a>B, a=8, >a and a=p holds.

(iv) Unless a%e and SzZe¢, then one and only one of a>p8, a=p
and >a holds.

(v) If there exists y(%e¢) in 4 such that y=a and y=p, then
one and only one of a>8, a=p and B>« holds.

4. Put S(a)=(ycS; y=a), Sa)=(yeS; v2a), Sia)={yeS.;
g% x}, S,(a)={z¢8,; z2=x}, S a)={z¢S,; z%w}, Si(a)={z¢8.,; 22w} and
S,(a)={z€S,; z=x} for a fixed element x of -S,.

Then S,(a), S¥a), Si(a) are defined for all a(Z¢) in 4 and S,(a),
Sia), Si(a) and S,(a) are done for all « in A such that « £eand axv.

And these all subsets are determined uniquely by « and are
mutually disjoint.

And we have
Theorem 3. (i) S.(a)se for every a(Ze) in 4, and especially
S.(v)={e}.
(ii) For every a(ze) in 4
S.=8.(a)+Ska) if S, is a left zero,
=S.(a)+8i(a) if S, is a right zero
and for every a(Ze, v) in 4
S,=5.(a)+S4(a)+S;(@)+5.(a).
(ili) For every z in S,(aZe¢) it follows that
y=z for every yeS.(a),
y2o [y=2x] for every yeSi(a) [yeSi(a)]
and for every z in S, (aze, xv) it follows
z=x for every zeS,(a),
22w [222] for every zeSi(a) [2eSi(a)],
zzx for every zeS,(a).
(iv) For a(Ze, xv), f(ZEe, ¥v) it follows that
if a>8, then
1) S.(0)=S8.(8),
2) S.(a)=S.(8),
8) Sia)=S.(B)+SXH),

4) Si(a)=S.(8)+S:(8)
and if a% S, then
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5) S.(@)=S5.(8), 5) S.(B=S.(@),
6) SHSS.(B+SB),  6) SUHSS.(a)+Si(a),
7) Si(a)=8,(8)+Sip), 7) 8BS S.(a)+Sia).
5. According to Tamura [4] a pB-semigroup was either
(1) a zero semigroup defined by xy=e for all x, y
or (2) a semigroup which contains waze and which is defined by
WE=TW="1W if z2xw;
xy=wi=e if xxw, yxw.
For convenience, we shall call (1) and (2) a B;,-semigroup and a
Bs-semigroup respectively.
By the way, we can prove that T=S,+S, is a semigroup, which

shall be called a B,-semigroup, defined by

xy=x [yx=x] for xeS,, yeT and z'y=e [yx'=e] for 'cS,; ye T
if S, is a left [right] zero.

Furthermore

Theorem 4. G=3S, is either

vEAo

(1) a B,-semigroup
or (2) a B,-semigroup.

We shall call G a B-semigroup.

Here, we note that S,, S., S, of G can be written as follows:

S,={xeG; *xza, =2z}, S,={xecqG; v¥*=x}, and S,={xeG; 2*xz,
2*2 2}, and that ¢, say a definite element in G, can be determined as

any fixed oné element of S, if S,=G,
x?, xeS,+S, if S.%G.

6. Combining the above theorems, we can establish the follow-
ing theorem:

Theorem 5. In order that a semigroup S is a B*-semigroup, it
is necessary and sufficient that S is uniquely expressible as a partially
ordered set A=4,~4,—4, satisfying Theorem 2 of maximal left zero
subsemigroups S,;, 1¢4,, maximal right zero subsemigroups S,, rc4,,

and a non-empty maximal B-semigroup G=3S, which has mutually

ved,
disjoint and uniquely determined subsets S,(a), S{a) (or Si(a)), S.(a),
Sia), S;(a), and gp(a) for all a(Ze¢, =v) in A satisfying Theorem 3.
Therefore we have
Corollary 1. A p*-semigroup S is a B-semigroup if and only if
S has exactly one idempotent element.
Corollary 2. A B*-semigroup S is a Rédei’s semigroup if and
only if S is a band” and 4 is a chain i.e. linearly ordered set.
Corollary 8. A p*-semigroup S is a left or right zero semigroup

7) A band means a semigroup whose every element is idempotent.
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if and only if S does not contain elements which commute® with
each other at all.

7. Suppose that there are given mutually disjoint systems {S.};cy,
of mutually disjoint left zero semigroups, {S,}.c,, of mutually disjoint

right zero semigroups and a non-empty p-semigroup G=38S,, 4,

V€ dq
={w, ¢, v}, and the suffix set 4=4,~4,~4, is a partially ordered set
(=) satisfying Theorem 2 and for all a(Ze *v) in 4 mutually
disjoint subsets S,(a), Si(a), (or Si(a)), S.(a), Sia), S;(a) and S,(a) of
G satisfying Theorem 3 are determined uniquely.
Then, put S=ZAS¢,:Z S;+>3S,+>7S, and define zy, xS, and
a€ €4,

ieqy “ ved,
yeS,, as follows:

(1) The case a=g.
xy=x-y ( - denotes the multiplication of G) if a<c4,,
=z if aed,
=y if aed,.
(2) The case a=§ and
a) aé¢le v}, Bele ok

TY==yx if a>p,

TY=Y=yx if f>a,

ry=e=yx (e is the definite element of G) if azp.
b) a=¢, B=v.

TY=Y=yx if B8>¢,

TY=x=1yx if fZe and xeS.(B),
zy=x, yr=e if BZe and xeSp),
xy=e, yr=x« if BZe and x<S7(p).
¢) a=v, B=xe.
TY=y=yx if f>e,
rY=20="yx if BZe and z¢S,(B),
zy=x, yrx=e if BZxe and xeSYp),
zy=e, yr=2 if BZe and x2eS}(p),
rYy=e=yx if BZe and xegv(ﬁ).
d) a=v, B=e.
TY=2-Y.
Then we can prove that S forms a p*-semigroup with respect
to the above multiplication. Thus we have
Theorem 6. Any p*-semigroup is constructed in the above
mentioned way.
8. Let Szaezd S, and § =a%/ !, be two B*-semigroups composed by

the above mentioned way. And let G=S,+S,+S, and G'=S,+8S.

8) Two elements # and y are said to commute with each other if zy=yzx.
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+8/, be the B-semigroups of S and S’ respectively and let S,(a), SKa),
Si(a), S.(@), Sia), Si(a), S.(a); Sia), SHa), Si), Sia’), SKa),
Si(a’), Si(a’) be subsets of G and G’ which are defined for all a(Zze,
v) in 4 and a'(Fe’ =xv') in A’ respectively.

Then we have the following theorem:

Theorem 7. S=§ S. is isomorphic [anti-isomorphic] onto S’

=>18! if and only if there exist an order isomorphism ¢ of A onto

a’e A’
A', isomorphisms [anti-isomorphisms] . of S, onto S}, for all ae 4,4,
and an isomorphism [anti-isomorphism] +, of G onto G’ satisfying
the following conditions: for all a(Ze, %v) in 4

Vo S.(@) =Se(a)), Yo SHa))=SKe(a)) [Wo(SHa)=SE(e(a))],
Wo(S5(e) = SE(p(@)) [¥(Si(a))=SK ()], Wo(S.(a))=SWe(a)),
VoS ) =SKe(a)) [Wo(SHa))=SU(p(a)], Wo(S5(a))=Sr(p(a))
[¥o(S2(@)=SHeN, Po(Su(a))=8{e(a)).
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