
628 [Vol. 39,

140. Semigroups Whose Arbitrary Subsets Containing
a Definite Element are Subsemigroups

By Morio SasaKI
Department of Mathematics, Iwate University

(Comm. by Kenjiro SHODA, M.J.A., NOV. 12, 1963)

1. Consider a semigroup S satisfying the following condition:
Any subset of S which contains a definite element e is a subsemi-
group of S.

A semigroup S is called a fl*-semigroup if S satisfies the above
condition.

For example semigroups of order 2, fl-semigroups [4x) and Rdei’s
semigroups are all fl*-semigroups, where by a Rdei’s semigroup we
mean a semigroup satisfying the condition that any non-empty subset
is a subsemigroup [2J.)

2. Immediately we have that a homomorphic image of S is a
*-semigroup and any subset of S which contains e is also a fl*-
semigroup.

Putting now T--{xeS; x=x}, U--{xeS; x=e, xe, ex--xe--e}, and
V=[xeS; x=e, x#e, ex=xe=x}, it follows that V has at most one
element and S= T+ U-- V (disjoint class-sum).

We define a relation as follows:
ab means that at least one of aTb, aT’b and a’b holds, provided

that aT.b [.ay.b means ab=a and ba--b [ab=b and ba=a for a, b in

T, a...b does ab=ba=e for a, b in S\T.8
Then we have the following lemmas.
Lemma 1. z is an equivalence relation defined in S.
Lemma 2. For any a, b in U, any c in T and w in V
ab, wa ( denotes the negation of ), wc and ac.
Lemma 3. If V4:V,) then e’za implies e--a.
Thus we have
Theorem 1. S can be represented as

S= S-- S+ . S-q-

_
S (disjoint class-sum)

where A
S, 2 e z/ [S,/e/_ is a maximal left [right zero) subsemigroup

which contains no e,

1) The numbers in brackets refer to the references at the end of the paper.
2) See Theorem 50 in [2].
3) S\ T means the set of all elements belonging to S but not to T.
4) denotes the empty set.
5) A left right zero is a semigroup defined by xy=xxy=y for all x, y.
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S, is a maximal left or right zero subsemigroup which contains
e and especially S-{e} when

S- or {w},
S=U.

3. Next, we define an ordering a>b meaning a>=b, or a>b, or

a>_b, defined as follows:

a>= b means either a-- b or ab-- ba-- a,
a>b a>b does ab--a and ba--eab--e and ba--a for a:e,

b#e, a:b.
It is easily shown that
Lemma 4. > is a partial ordering defined in S.
Lemma 5. For weSt, u eS, and e

w>x>e>y>u implies x-e and y-e.
Define a__b meaning that ab- ba e for a 4= e, b 4= e, a 4= b, and a/b

(/ denotes the negation of ~). Then we have
Lemma 6. Let a_b. Then
(i) e>a ( denotes that >__ and #) and e>b,
(ii) if there exists c (_<_e) such that ca and c>b, then c--e.
Lemma 7. Let bc, b4=c, and ab. Then
(i) a>b implies a>c,
(ii) a>b _a>bJ implies a>c ac,
(iii) ab implies ac if b/c,

ac if bc.
Lemma 8. Let bc bTc, b:c, and ab. Then ba ba does

not occur and
(i) b>a implies c>a or c>a ca if eb,

ca if eb,
(ii) ba baJ implies eb and c>a or c>a c>a.
Lemma 9. Let bNc, b#c and ab. Then

b>_a implies ac.
Let S-{S}, and define and

__
in S as follows:

S>=S means S-S or xy for every xeS and every yeS,
S,_S does x__y for every xeS, and every yeS.

By S,S we denotes that S,>=S and S#S.
And, we define >= (> or -) and

_
in A as follows:

> means S>S, - does S-S and _fl does S_S.
Then it is easily shown that S is order isomorphic onto A under

a mapping S,-->a. And we have
Theorem 2. A is a partially ordered set with respect to => which

contains a definite element e and has the following properties:

6) =2 denotes the negation of
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(i) If w eA, then for any aA one and only one of a>,
and e> a holds.

(ii) a>e implies a>o and a>v implies a>__e.
(iii) For any a(#, #), fl(#, #) in A one and only one of

a > fl, a-- fl, > a and afl holds.
(iv) Unless ae and fle, then one and only one of a>,

and fl a holds.
(v) If there exists () in A such that ya and , then

one and only one of a>fl, a-- and fl>a holds.
4. Put Z,(a)-- {y S,; y x}, S[(a)- {y e S,; yx}, S:(a)- {y

yx}, S(a)-{z S; zx}, S:(a)-{zeSo; zx}, S:(a)-{zeSo; zx} and

S(a)-{zeSo; zx} for a fixed element x of S..
Then S(a), S(a), S(a) are defined for all a(s) in A and o(a),

S:(a), S:(a) and S(a) are done for all a in A such that a e and
And these all subsets are determined uniquely by a and are

mutually disjoint.

And we have

Theorem 3. (i) S,(a)e for every a(e) in A, and especially

(ii) For every a($e) in

S-S(a)+S(a) if S is a left zero,

S(a) +S(a) if S is a right zero
and for every a(s, #) in

(iii) For every x in S(as) it follows that
yx for every yeS,(a),
yx [yx for every yeS,(a) [yeS(a)

and for every x in S (ae, #v) it follows

zx for every zeSt(a),
zx [zx for every zeSt(a) [zeS:(a),
z x for every z e S(a).

(iv) For a(, #), fl(s, #) it follows that
if a > fl, then

and if a

_ , then

1) S.(a)S.(fl),
2) S(a)S(fl),
3)
4)
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5) 5’)
6) 6’)
7) S:(a)So()+S(), 7’)

5. According to Tamura 4J a fl-semigroup was either
(1) a zero semigroup defined by xy-e for all x, y

or (2) a semigroup which contains w#e and which is defined by
wx-xw--w if x# w;
xy=w-e if x#w, y#w.

For convenience, we shall call (1) and (2) a fl-semigroup and a
fl-semigroup respectively.

By the way, we can prove that T=S+S is a semigroup, which

shall be called a fl-semigroup, defined by
xy=x [yx-x for xeS,, yet and x’y=e [yx’--e for x’eS; y T

if S. is a left [right zero.
Furthermore
Theorem 4. G-S is either

0

(1) a fl-semigroup
or (2) a fl-semigroup.

We shall call G a fl-semigroup.
Here, we note that S, S., S, of G can be written as follows:
S- {x e G; x # x, x-x}, S. {x G; x-x}, and S {x e G; x # x,

x#x}, and that e, say a definite element in G, can be determined as
any fixed one element of S. if S,--G,
x, xeS+S if S,G.

6. Combining the above theorems, we can establish the follow-
ing theorem:

Theorem 5. In order that a semigroup S is a fl*-semigroup, it
is necessary and sufficient that S is uniquely expressible as a partially
ordered set A--AtlAntA0 satisfying Theorem 2 of maximal left zero
subsemigroups S, 2At, maximal right zero subsemigroups S,, eA,
and a non-empty maximal fl-semigroup G=S which has mutually

disjoint and uniquely determined subsets ,(a), St(a) (or S:(a)), S(a),
St(a), S:(a), and S(a) for all a(e, #) in A satisfying Theorem 3.

Therefore we have
Corollary 1. A fl*-semigroup S is a fl-semigroup if and only if

S has exactly one idempotent element.
Corollary 2. A fl*-semigroup S is a Rdei’s semigroup if and

only if S is a band) and A is a chain i.e. linearly ordered set.
Corollary 3. A fl*-semigroup S is a left or right zero semigroup

7) A band means a semigroup whose every element is idempotent.
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if and only if S does not contain elements which commutes) with
each other at all.

7. Suppose that there are given mutually disjoint systems
of mutually disjoint left zero semigroups, {S,},z of mutually disjoint

right zero semigroups and a non-empty --semigroup G--, S, A0
Jo

--{,,}, and the suffix set A--AAAo is a partially ordered set
(>__) satisfying Theorem 2 and for all a(s, 4:) in A mutually

disjoint subsets S,(a), S,(a), (or S:(a)), S(a), S(a), S(a) and S(a) of
G satisfying Theorem 3 are determined uniquely.

Then, put S- S.- S+ S,+ S and define xy, x e S. and
A , A tae A J0

y eS, as follows:
(1) The case a--.

xy--x, y denotes the multiplication of G) if a eA0,
=x if aeA,
=y if aAr.

(2) The case a4=fl and
a) a{e, o}, fie{s,

xy--x--yx if a ,
xy--y--yx if
xy--e--yx (e is the definite element of G) if a_fl.

b) a-e, #.
xy-y-yx if

xy--x--yx if fle and xS.(fl),
xy=x, yx- e if fle and x S.(fl),
xy- e, yx-x if fl s and x S[(fl).

c) a-o, #e.
xy-- y yx if

xy--x--yx if fl-e and xS(fl),
xy- x, yx e if fl s and x St(fl),
xy e, yx-x if fl

_
e and x S:(fl),

xy-e-yx if fle and xS(fl).
d) a--o, --e.

xy--x.y.
Then we can prove that S forms a fl*-semigroup with respect

to the above multiplication. Thus we have
Theorem 6. Any fl*-semigroup is constructed in the above

mentioned way.
8. Let S=, S, and S’- S, be two fl*-semigroups composed by

A atoll

the above mentioned way. And let G=S,+ S, +S and G’-S.
8) Two elements x and y are said to commute with each other if xy=yx.
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+S, be the fl-semigroups of S and S’ respectively and let S,(a), S(a),
s,( ). so,( ),s:(), so(), s(), so(), s(); s:.(’), s,,(’ ’), s,(’’), ’

S,( ), S,( be subsets of G and G’ which are defined for all (s,
#) in A and a’(s’ #’) in A’ respectively.

Then we have the following theorem:
Theorem 7. S-S is isomorphic [anti-isomorphic onto S’

=S, if and only if there exist an order isomorphism of A onto

A’, isomorphisms [anti-isomorphisms @, of S, onto
and an isomorphism [anti-isomorphism o of G onto G’ satisfying
the following conditions: for all a(s, #u) in A

o(S.())-s;.(()), o(St())-s:(()) Eo(S())- s:r(())?,
o(S:(.))- s:;(v(.)) [o(S:(.))= s:(e(.))?, o(S.(a))- s:.(e()),
o(St()) ’ -s,(e(.))-s.(()) [o(St(.)) s:r((.))] o(S(..))
[o(S:(.))- s:()), o(S(.))- s:.((.)).
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