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161. On the Gibbs Phenomenon for Quasi-Hausdorff Means

By Kazuo ISHIGURO® and Brian KUTTNER**
(Comm. by Kinjir6 KuNuGl, M.J.A., Dec. 12, 1963)

1. The Hausdorff transformation is defined as transforming the
sequence {s,} into the sequence {h,} by means of the equation

ha= 3 (1)s. [ r@—ryayir)

v=0
0

where the weight function ¥+(r) is of bounded variation in the interval
0<r<1. This transformation is regular if and only if
Y(1)—(0)=1,
and if (r) is continuous at r=0. We may assume that (0)=0,
then the above conditions become
Y(1)=1, (+0)=4(0)=0.
Corresponding to any fixed number r with 0<r<1, if we put
P(x)=e,(x), where
e(x):{ 0 for O0<Za<r
" 1 for r<z<l,
then the Hausdorff transformation reduces to the Euler transforma-
tion, i.e.

a,(r)= ﬁ <Z’>r”(1—'r)"’”sv.
v=0
The case r=1 corresponds to the ordinary convergence. For the
fundamental properties of the Hausdorff and Euler transformations,
see, e.g., G. H. Hardy ([1], Chapters VIII and XI).
Let ¢(t) denote the function of period 2z and equal to #(xr—t) in

the interval 0<t<2z. Then ¢(t) has a simple discontinuity at the
origin: its Fourier series is

=, sin nt
—_— (1)
n=1 n

0. Széasz [12, 18] investigated the Gibbs phenomenon of this series
for the Hausdorff and Euler means. Here we put s,=s,(t)=0 and

s,=s,(t)= ZM He proved the following
n=1 n

THEOREM 1. For the regular Hausdorff means of (1) we have
1 T o1
lim ()= | dy(r) | 2L dy,
imhto=[av [ 25

as nt,—>r with 0<r<+ o,
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In the following we shall also use = as a number with 0<7< + oo,

This theorem contains his earlier result on the Gibbs phenomenon
for the Euler means, i.e.

THEOREM 2. For the Euler means of (1) we have
lim o, (r, £,) = f Tsiny g,
n—00 o y
as nt,—~>r and nti—0.
2. The quasi-Hausdorff transformation has recently been investi-
gated by B. Kuttner [4, 5,6, 7] and M. S. Ramanujan [9, 10, 11]. This
transformation is defined by means of the equation

ni=31(2)s, [ rreia—ryav)

y=mn

where the weight function y~(r) is of bounded variation in the interval
0<r<1. This transformation is regular if and only if
P(1)—(+0)=1.

We may assume that

v(1)=1, Y(+0)=0.
If we take r(x)=e,(x), where e.(x) is the same function as before,
then the quasi-Hausdorff transformation reduces to the circle trans-
formation, i.e.

o

sim)=3)(3)rria—ry s,

v=mn

where 7 is any fixed number with 0<»<1. The case r=1 corresponds
to the ordinary convergence. (See, e.g., G. H. Hardy [1], Chapters IX
and XI.)

The Gibbs phenomenon of (1) for the circle means was studied
by K. Ishiguro [2]. He proved the following

THEOREM 3. For the circle means of (1) we have

t/r s
lim o3(r, t,)= [ Y gy,
0

N0 y
as nt,—~>7t and nti—>0.
The purpose of the present note is to generalize Theorem 3 to
the quasi-Hausdorff means as follows:

THEOREM 4. For the regular quasit-Hausdorff means of (1) we
have

lim hi(t)= [ dy(r) [° -S-ii‘—f/idy,
0 0

provided that the weight function (r) is continuous at r=0, nt,—>r
and nti—>0.

3. Proof of Theorem 4. TFrom the assumption we may put
Y(1)=1, Y(+0)=+(0)=0. Take any fixed § with 0<d<1, and write
the quasi-Hausdorfl transform A} as j¥--k¥, where
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it=3(2)s. [ ra—ry-rdyn) (2)
and 0
kr=3(2)s [ ria—ry oy (3)

8
Of course, the transformations from {s,} to {j}}, {k}} are not regular,
but they are “multiplicative” with multipliers (), 1—(8) respec-
tively (i.e. they transform a sequence converging to s into sequences
converging to ¥(d)-s, {L—y(d)}-s).
Now $,=0,
=5 ()= v sinnt _ _|_f sin (v+Hx de.
n=1 2 sin 2
Since {s,} is bounded we get, from (3),

ke=kx@)= [ 35 (2) sy A —ry-du(r)
= f Cok (r, A (r).

Now, with the notation of [2], it is easily seen that the estimates
1—(rp)**'=0[(n+1)a*],
1=7 L 0G),

a—=

used in [2] for fixed r, do, in fact, hold uniformly in # for é<r<1.
The argument of [2] therefore shows that

Nin/r o
sitrt)= [ S dy o) (4)
0

as n—>oo, uniformly in r for §<r<1. Hence we obtain easily
T/r o3
lim ki(t)= [ dy(r) [ S gy
Ti—r00 3 -0 y
:fld«,lr(r)ft sin y/r dy.
3 0 y

Now it clearly follows from (2) that if {s,} is bounded, say |s,|< M,
then

. 8
1< M [ 1dp)]. (5)
0
In effect we have, for all v, ¢

i sin nt ‘ <M, say,
n=1 n

whence (5) holds. By the continuity of (r) at =0 the expression
(5) can be made arbitrarily small, independent of =, t, by making o
sufficiently small.

Again, we have, for all Y
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-
If wdy)éM’, say.
A )

Hence
|0f"d«p<r>0f”"s—i;ldy)sM'of’|d«p(r)|,

which again can be made arbitrarily small by making ¢ sufficiently
small.
Collecting the above estimations we obtain

lim hx(t)= [ dy(r) [ &;’/—”—d'y
0 0

whence the proof is completed.

4. Remark. In the previous paper [2] we proved the equation
(4). But we shall make a certain simplification of its proof here.
Of course, this simplification may be also applicable to the proof of
Theorem 4.

We put

% _t___._!-_ ‘ l n+l o
ak(r, t)+ =% Of cot 2 2(rp)"*! sin (n+1)(a+x)dx
—-;—Oft (rp)*** cos (n+1)(a+x)dx

_ 1.
= I=J).

Then we see easily |J|<t. (See [2] p. 290.)
If we write, to estimate I,
atx=p
we find that
sin 2
tan f= cost—(1—r)’
and further that

ﬁz%ﬂwa, |#|<K say,

for small  and for any fixed » with 0<r<1.

The equation (4) may now be obtained as in the paper [2].

5. M. S. Ramanujan [10] introduced the transformation (S*, )
by means of the equation

oo

si=3(")s [ ra—ryaee),

»=0

where the weight function y+(r) is of bounded variation in the interval
0<r<1. This transformation is regular if and only if
V(1) —y¥(+0)=1,
and if Y(7) is continuous at r=1.
If we take y(x)=¢,(x), where e, (x) is the same function as before,
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then the transformation (S*, ¥+) reduces to the transformation (s, 7)
or S;_, of W. Meyer-Konig [8] and P. Vermes [14], i.e.

wm=5 (" )ra—rys,
v=0
where 7 is any fixed number with 0<r<1.
The Gibbs phenomenon of (1) for the means (g, 7) was studied

by K. Ishiguro [3]. He proved the following
THEOREM 5. For the means (o, 7) of (1) we have

1-7r

lim 4,(r, ¢,)= f ©osiny g,
Y

n—0c0

0
as nt,—~>t and nti—0.

We can generalize this theorem to the means (S*, ¥) as follows:
THEOREM 6. For the regular means (S*, ) of (1) we have

1=
1 s 8in——y
lim s:‘:(tn)=f dy(r)y j T "~

provided that the weight function (r) is continuous at r=0, nt,—~>r
and nti—>0.

The proof of Theorem 6 is quite similar to that of Theorem 4.
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