726 [Vol. 39,

160. The Asymptotic Behaviour of the Solution of a Semi-linear Partial Differential Equation Related to an Active Pulse Transmission Line

By Masaya YAMAGUTI (Comm. by Kinjirô Kunugi, m.J.A., Dec. 12, 1963)

1. Introduction. J. Nagumo [1] proposed as active pulse transmission line simulating an animal nerve axon. The equation of propagation of his line is the following:

$$\begin{array}{ccc} (1) & \frac{\partial^2 u}{\partial t^2} = \frac{\partial^3 u}{\partial x^2 \partial t} - \mu (1 - u + \varepsilon u^2) \frac{\partial u}{\partial t} - u & \mu > 0, \ \varepsilon > 0 \\ x > 0, \ t > 0 \end{array}$$

with the boundary data;

$$\begin{cases} u(x,0) = 0 & (x \ge 0) \\ u_t(x,0) = 0 & (x \ge 0) \\ u(0,t) = \psi(t) & (t \ge 0), \ \psi(t) \equiv 0 \ \text{ for } \ t \ge t_0. \end{cases}$$

In this note, we consider some asymptotic behaviours of the solution for the equation of related type with the same boundary data: Our equation is the following:

(3)
$$\frac{\partial^2 u}{\partial t^2} = \frac{\partial^3 u}{\partial x^2 \partial t} - f'(u) \frac{\partial u}{\partial t} - g(u).$$

At first, we remark that the existence of global solutions for this problem (3) with boundary data (2) where $\psi(t) \in C^2$ is assumed was completely proved by R. Arima and Y. Hasegawa [2] under the conditions:

$$\left\{egin{array}{l} -K_1{\le}f'(u){\le}K_0(u^2{+}1),\ |g(u)|{\le}K_2(u^2{+}|\,u\,|),\ G(u){=}\int_0^u \{-g(z)\}dz{\le}K_3u^2,\ g(u),\;f'(u){\in}C^1. \end{array}
ight.$$

Throughout this paper, we always assume that f'(u), g(u) satisfy this condition (4).

Our results are divided into two parts. The one is the case $g(u) \equiv u$, the other is the case $g(u) \equiv 0$. For the first case, we can prove that any solution u(x,t) tends uniformly to zero, when t tends to $+\infty$, under the additional condition (5), which corresponds to the limitation $\varepsilon > \frac{3}{16}$ in (1). For the second case we can show the existence of a threshold value for the boundary data (Prop. 3) and a sort of asymptotic value under another additional conditions (Prop. 4), (9), (11), which is independent of (5).

We remark also that the summability in x, of $u(x, t)^2$ and $u_x(x, t)^2$,

which is shown in $\lceil 2 \rceil$, will play an important role in our proofs.

2. The first case. We assume that $g(u) \equiv u$ and we also assume the following condition (5) (which will be imposed only in this section).

There exists a positive constant c such that

(5)
$$uf(u) \ge cu^2 \text{ where } f(u) = \int_{0}^{u} f'(z)dz.$$

Then we have

PROPOSITION 1. For arbitrary given data $\psi(t) \in C^2$ appeared in (2), the solution of (3) tends uniformly to zero when t tends to $+\infty$ under the condition (5).

PROOF. We transform the equation (3) to a system of equations by integration with respect to t and putting $\int_{a}^{t} u(x,\tau)d\tau = w(x,t)$,

$$\left\{\begin{array}{l} u_t = u_{xx} - f(u) - w \\ w_t = u. \end{array}\right.$$

We use the following energy form to obtain an energy inequality, here we denote by F(u) the primitive function of f(u) taking F(0)=0,

$$(7) \qquad E(t) = \int_{0}^{\infty} \left[\frac{u^{2}}{2} + \frac{u^{2}}{2} + k \frac{u^{2}}{2} + kF(u) + k \frac{(u+w)^{2}}{2} + L \frac{u^{2} + w^{2}}{2} \right] dx,$$

where $k > K_1$ and L is a positive constant so large that it satisfies $\frac{k}{k+L} < c' < c$. Differentiating (7) with respect to t, and by the integration by parts, we obtain

(8)
$$E'(t) = -\int_{0}^{\infty} \left[u_{xt}^{2} + (f'(u) + k)u_{t}^{2} + (k+L)u_{x}^{2} + (k+L)uf(u) - ku^{2} \right] dx$$

 $\leq 0 \text{ for } t \geq t_{0},$

where t_0 is a constant such that $\psi(t) \equiv 0$ in $0 \le t \le t_0$ but $\psi(t) \equiv 0$ in $t \ge t_0$.

We can conclude from the differential inequality (8), following facts are finite:

- a) E(t) is non-increasing in t for $t \ge t_0$.
- b) $0 \le E(t) \le E(t_0)$. Consequently $\lim_{t \to +\infty} E(t)$ exists.
- c) Integrals:

$$\int_0^\infty rac{u^2}{2} dx, \int_0^\infty rac{u_t^2}{2} dx, \int_0^\infty rac{w^2}{2} dx, \int_0^\infty u_x^2 dx$$
 are bounded for $t \ge t_0$.

d) Integrals:

$$\int_{t_0}^{\infty}\int_0^{\infty}\frac{u^2}{2}dxd\tau,\int_{t_0}^{\infty}\int_0^{\infty}\frac{u_t^2}{2}dxd\tau,\int_{t_0}^{\infty}\int_0^{\infty}\frac{u_x^2}{2}dxd\tau,\int_{t_0}^{\infty}\int_0^{\infty}\frac{u_{xt}^2}{2}dxd\tau.$$

If we put $\varphi(t) = \int_0^\infty \left[\frac{u^2}{2} + \frac{u_x^2}{2} \right] dx$, we can show $\varphi(t) \to 0 \ (t \to +\infty)$. Because,

$$\begin{split} &|\varphi(t)-\varphi(t')| = \Big|\int_{\nu}^{t} \varphi'(\tau) \, d\tau \Big| = \int_{0}^{\infty} \int_{\nu}^{t} \left[u u_{t} + u_{x} u_{xt} \right] \, dx \, d\tau \\ &\leq \left[\int_{\nu}^{t} \int_{0}^{\infty} u^{2} dx d\tau \right]^{\frac{1}{2}} \left[\int_{\nu}^{t} \int_{0}^{\infty} u_{t}^{2} dx d\tau \right]^{\frac{1}{2}} + \left[\int_{\nu}^{t} \int_{0}^{\infty} u \, dx \, d\tau \right]^{\frac{1}{2}} \left[\int_{\nu}^{t} \int_{0}^{\infty} u_{xx}^{2} dx \, d\tau \right]^{\frac{1}{2}}. \end{split}$$

By d) above, we can find a constant T for arbitrary given $\varepsilon > 0$, such that $|\varphi(t) - \varphi(t')| < \varepsilon$ for t, t' > T. Then $\lim_{t \to +\infty} \varphi(t)$ exist and by the summability we see $\lim_{t \to +\infty} \varphi(t) = 0$. Consequently we can prove that $\max_{0 \le x < +\infty} |u(x,t)| \to 0$ for $t \to +\infty$, by the Sobolev's lemma.

3. The second case $(g(u)\equiv 0)$. At first we mention some additional conditions for this case:

$$\begin{cases} f(u) < 0 & (u < 0), & f(u) < 0 & (a < u < b), \\ f(u) > 0 & (0 < u < a), & f(u) > 0 & (b > u), \end{cases}$$

here a and b are two distinct constants.

Under this condition (9), we can prove a generalized maximum-minimum principle for the solution of (3) for g(u)=0. That is

PROPOSITION 2. Under the condition (9), if B_0 is a constant greater than b, then $u(x, t_0) < B_0$ implies always $u(x, t) < B_0$ for $t \ge t_0$, and $u(x, t_0) \ge 0$ implies $u(x, t) \ge 0$ for $t > t_0$.

PROOF. If there is a point (x_1,t_1) where $u(x_1,t_1)\!=\!B_0$, then we can consider the set E of (x,t) $t\!>\!t_0$, $0\!\leq\!x\!<\!+\!\infty$ such that $u(x,t)\!=\!B_0$. We can prove by the contradiction that there is a positive distance $\delta\!>\!0$ between the set E and the half straight line $t\!=\!t_0$ $0\!\leq\!x\!<\!+\!\infty$. If not, there should be a sequence of points (ξ_n,τ_n) which tends to one point of this half line or $+\!\infty$ point of this half line, it signifies that there exists a point (ξ,t_0) where $u(\xi,t_0)\!=\!B_0$ or a sequence of points (ξ_n',t_0) $(\xi_n'\!\rightarrow\!+\!\infty)$ where $u(\xi_n',t_0)\!\geq\!\frac{B_0}{2}$, by the fact that $u_t(x,t)$ is bounded for $0\!\leq\!t\!\leq\!T$. (T is some constant t0.) This latter case contradicts to the fact that $u(x,t_0)^2$ and $u_x(x,t_0)^2$ are summable in

Therefore we find a point (x_1, t_1) where $u(x_1, t_1) = B_0$, $u(x, t) < B_0$ $(t_0 \le t < t_1, 0 \le x < +\infty)$ and $u(x, t_1) < B$ $(x < x_1)$. Because u(x, t) is a solution of (2), (3), $u_t = u_{xx} - f(u)$, $u_{xx}(x_1, t_1) \le 0$ and $f(B_0) = f(u(x_1, t_1))$. Consequently $u_t(x_1, t_1) < 0$, this means that there exists a point (x_1, t_2) $(t_2 < t_1)$ such that $u(x_1, t_2) > u(x_1, t_1) = B_0$. This is a contradiction. The same argument shows that $u(x, t_0) \ge 0$ implies $u(x, t) \ge 0$ for $t \ge t_0$.

We add still one additional assumption:

 $0 \le x < +\infty$ [2].

(10) There exist two positive constants c_1 and a_1 such that $uf(u) \ge c_1(u^2 + F(u))$ for $0 \le u \le a_1 < a$.

PROPOSITION 3. Under the assumptions (9) and (10), if $0 \le u(x, t_0) < a_1$, u(x, t) tends exponentially to zero when t tends to $+\infty$, in the maximum norm. Before entering into the proof, we remark that the

same discussion in Proposition 2 shows that if $u(x, t_0) < a_1$, u(x, t)remains always less than a_1 for $t \ge t_0$.

PROOF. We consider an energy form

$$E_{i}(t) = \int_{0}^{\infty} \left[\frac{u^{2}}{2} + \frac{u_{x}^{2}}{2} + F(u) \right] dx,$$

Differentiating with respect to t, we have

$$E_1'(t)\!=\!-\int_0^\infty \left[u_x^2\!+uf(u)\!+\!u_\iota^2
ight]dx \ <\!-\int_0^\infty \left[u_x^2\!+\!c_1\!(u^2\!+\!F(u))
ight]dx\!<\!-c_2E_1\!(t),\;c_2\!>\!0.$$
 ently, we obtain

Consequently, we obtain

$$E_1(t) \leq E_1(t_0)e^{-c_2t}$$

By the Sobolev's lemma, we conclude that u(x, t) tends exponentially in the sense of uniform maximum norm.

Finally we assume the additional condition:

(11)
$$\begin{cases} f'(u) > 0 & (u < \alpha), \quad f(u)^2 \ge c_0' F(u) & (u \le 0) \\ f'(u) < 0 & (\alpha < u < \beta), \\ f'(u) > 0 & (\beta < u), \end{cases}$$

where $0 < \alpha < \beta < b < B$. We denote B the point such that F(B) = 0, F(u) > 0 for u > B.

Proposition 4. Denoting B_1 a constant greater than B_2 , and M_t the set of x, $(0 \le x < +\infty)$ such that $u(x, t) \ge B_1$, then the measure of the set M_t tends exponentially to zero when t tends to $+\infty$ under conditions (9) and (11). Moreover under same condition, the integral $\int\limits_{M_t} u^2(x,t) dx$ tends also exponentially to 0 when t tends to $+\infty$.

PROOF. We can construct a 2 times differentiable function $\Phi(u)$ as follows:

$$\begin{cases} \varPhi(u) \equiv F(u) & u \leq 0 \\ \varPhi(u) \equiv 0 & 0 \leq u \leq B_2 & (b < B_2 < B) \\ \varPhi(u) \equiv X(u) & u > B_2 \end{cases}$$

where X(u) satisfies following conditions:

$$(12) \begin{cases} X'(u) \geq \frac{1}{f(B_2)} X(u), \ X(u) > 0, \ X''(u) > 0 \ \text{for} \ u > B_2 \\ X'(B_2) = X(B_2) = 0 \\ \text{there exists a positive constant c_3 such that $X(u) \geq c_3 u^2$ for $u \geq B_1$.} \end{cases}$$

In fact, taking $\varphi(u)$ such that satisfies $\varphi(u)$, $\varphi'(u)$, $\varphi''(u) > 0$ for $u>B_2$ $\varphi'(B_2)=\varphi(B_2)=0$, and $\varphi(u)\geq c_4u^2$ for $u\geq B_1$, and setting $X(u) = e^{\frac{u}{f(B_2)}} \varphi(u)$ we see X(u) satisfies (12). This means that $\Phi(u)$ satisfies always $\Phi'(u)f(u) \geq c_0'\Phi(u)$.

Now we use the following a new energy form

(13)
$$E_2(t) = \int_0^\infty \varPhi(u) dx$$

(the summability of $\Phi(u)$ is evident by the fact that u^2 and u_x^2 are summable). Differentiating with respect to t, we have

$$\begin{split} E_2'(t) &= \int_0^\infty \varPhi'(u) u_i dx \\ &= -\int_0^\infty \varPhi''(u) u_x^2 dx - \int_0^\infty \varPhi'(u) f(u) dx. \end{split}$$

By the condition (12) and remarking that $f(u) > f(B_2)$ for $u > B_2$, we have

That is
It follows that

Relating Proposition 3, we mention a remark.

REMARK. Considering an another energy form which is not positive definite, we can show the existence of a solution of (3) in the case $g(u)\equiv 0$, which does not tends uniformly to zero when t tends to $+\infty$. In fact, taking

$$E_3(t) = \int_0^\infty \left[\frac{u_x^2}{2} + F(u) \right] dx$$

if $u(x, t_0)$ satisfies

$$\int_{0}^{\infty} \left[\frac{u_{x}^{2}(x, t_{0})}{2} + F(u(x, t_{0})) \right] dx < 0, \ u(x, t_{0}) \ge 0,$$

then u(x, t) does not tend to zero uniformly; because, if not, for $t > T_1$ (sufficiently large)

$$|u(x,t)| < \varepsilon$$

for given $\varepsilon < \alpha_1 < \alpha$, then by the same discussion in Proposition 2, we have

$$0 \le u(x, t) < a_1$$
.

It signifies that $E_3(t) = \int_{a}^{\infty} \left[\frac{u_x^2}{2} + F(u) \right] dx \ge 0$ by the condition (9).

That is a contradiction because we can show always that

$$E_3'(t) = -\int_0^\infty u_i^2 dx \le 0 \ (t \ge t_0).$$

References

- [1] J. Nagumo, S. Arimoto, and S. Yoshizawa: An active pulse transmission lines simulating nerve axon, Proceedings of the IRE, **50** (10), 2061-2070 (1962).
- [2] R. Arima, and Yōjirō Hasegawa: On global solutions for mixed problem of a semilinear differential equation, Proc Japan Acad., **39**, 721-725 (1963).