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160. The Asymptotic Behaviour of the Solution of
a Semi-linear Partial Differential Equation Related
to an Active Pulse Transmission Line

By Masaya YAMAGUTI
(Comm. by Kinjird KuNucl, M.J.A., Dec. 12, 1963)

1. Introduction. J.Nagumo [1] proposed as active pulse trans-
mission line simulating an animal nerve axon. The equation of
propagation of his line is the following:

Fu_ Pu 2 OU ©>0, >0
(1) T e MATEFEAS T D0 50
with the boundary data;

u(zx, 0)=0 (x=>0)
(2) {ut(x, 0)=0 (£>0)
w0, t)=v@)  (¢=0), ¥(¥)=0 for t>t,.
In this note, we consider some asymptotic behaviours of the
solution for the equation of related type with the same boundary
data: Our equation is the following:
Pu _ U oy N OU

At first, we remark that the existence of global solutions for
this problem (3) with boundary data (2) where y(¢t)eC*? is assumed
was completely proved by R. Arima and Y. Hasegawa [2] under the
conditions:

_KISf,(u)SKo(uz'l_l)y
l9(u) | < Ky(u®+|ul),

6= [ (—aENdz< K,

g(w), f'(u)eC.
Throughout this paper, we always assume that f’'(u), g(u) satisfy this
condition (4).

Our results are divided into two parts. The one is the case g(u)=u,
the other is the case g(u)=0. For the first case, we can prove that
any solution wu(z,t) tends uniformly to zero, when t tends to + oo,
under the additional condition (5), which corresponds to the limitation

s>—1% in (1). For the second case we can show the existence of a

(4)

threshold value for the boundary data (Prop. 3) and a sort of asymp-
totic value under another additional conditions (Prop. 4), (9), (11),
which is independent of (5).

We remark also that the summability in z, of u(z, t)* and w,(x, t)?
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which is shown in [2], will play an important role in our proofs.
2. The first case. We assume that g(u)=u and we also assume

the following condition (5) (which will be imposed only in this section).
There exists a positive constant ¢ such that

(5) wf(w)>cu? where f(u)= f * Pz,

Then we have

PRrROPOSITION 1. For arbitrary given data (t)eC* appeared in
(2), the solution of (8) temds uniformly to zero when t tends to -+ oo
under the condition (5).

ProoF. We transform the equation (8) to a system of equations

1
by integration with respect to ¢ and putting f u(zx, r)dr=w(x, t),
0

W, =1,
We use the following energy form to obtain an energy inequality,
here we denote by F'(u) the primitive function of f(u) taking F(0)=0,

b 2 2 2 2
(7) E(t)=f [3’;—+ Z +k“?i+kF(u)+k(“J;w) +LY ‘2“” }dw,
0

where k>K, and L is a positive constant so large that it satisfies
k.

k+L

gration by parts, we obtain

(8) E@®)= ——fw Luz~4(F'(w)+E)ul4-(k+ L)ui+ (k4 L)uf (w) — ku*] dx

<0 for t>t,,

where t, is a constant such that (£)=0 in 0<¢<¢, but Y(¢)=0 in
t>1t,.

We can conclude from the differential inequality (8), following
facts are finite:

a) E(t) is non-increasing in ¢t for t>t,.

b) O0<E(t)<E(t,). Consequently lim E(t) exists.
{—+oc0

¢) Integrals:

) 2 oo 2 0o 2 o
[ %dw, Of —'b;‘—dx, of —wé—dx, [ u2dx are bounded for t>t,.
d) Integrals:

f“f”ﬁdxdf,f”fw ui dxdr,fwfw Ys duds, fwfmu—”z”‘dxdr.
2 0 2 W 0 2 7 0 2 [ 2

oo u2 uZ
If we put ¢(t)= f [—E—+ 2’” ]dw, we can show ¢(t)—>0(t—>+ o). Be-
cause, 0

<c¢'<e. Differentiating (7) with respect to ¢, and by the inte-
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9= 1=| ["¢@del= [ [ Tun . dods

¢ oo 3 ¢t o 3 ¢ e e ¥
g[f[ u'“’dxer Uof u?dwdf] +[f[ udxdz-] Uofug,dxdr]

By d) above, we can find a constant T for arbitrary given ¢>0, such
that |e(t)—oe(t)|<e for ¢, t’>T. Then lim¢(t) exist and by the

t—+o0
summability we see lim ¢(t)=0. Consequently we can prove that
t—+4o0

max |u(, t)|->0 for ¢—+ oo, by the Sobolev’s lemma.
< 400

3. The second case (g(u)=0). At first we mention some addi-
tional conditions for this case:

(9) { Fu)<0 (u<0), Sw)<0 (a<u<bd),
fw)>0 (0<u<a), f(u)>0 (b>u),
here a and b are two distinet constants.

Under this condition (9), we can prove a generalized maximum-
minimum principle for the solution of (3) for g(u)=0. That is

PRroPOSITION 2. Under the condition (9), iof B, is a constant
greater than b, then u(x, t,)< B, implies always u(x, t)< B, for t>t,,
and w(x, t))>0 implies u(x, t)>0 for t>t,.

Proor. If there is a point (#,, t,) where u(z,, t;)=B,, then we can
consider the set E of (x,t) t>t,, 0<x<+ oo such that u(z, t)=DB,.
We can prove by the contradiction that there is a positive distance
0>0 between the set E and the half straight line t=t, 0<a< + .
If not, there should be a sequence of points (&,,r,) which tends to
one point of this half line or -+ oo point of this half line, it signifies
that there exists a point (&, ¢,) where u(¢, ¢,)=B, or a sequence of
points (&}, t,) (&~ -+ o) where u(&, to)g—l—zl, by the fact that wu(z,t)
is bounded for 0<t<T. (T is some constant >%,) This latter case
contradicts to the fact that wu(z, t,)* and u,(z,t,)* are summable in
0<z<+oo [2].

Therefore we find a point (x,, t,) where u(x,, t,)=DB,, u(x, t)<B,
(t,<t<ty, 0<x<+o0) and u(x, t,)<B (x<wx,;). Because u(x,t) is a
solution of (2), (8), u,=u,,— f(u), %, (%, t,)<0 and f(B,)=f(u(xy, t.)).
Consequently wu,(x,, ¢,)<0, this means that there exists a point (x,, t,)
(t.<t,) such that w(x,, t,) >u(x, t,)=B, This is a contradiction. The
same argument shows that u(zx, t,)>0 implies w(x, t)>0 for t>¢,.

We add still one additional assumption:

(10) There exist two positive constants ¢, and a, such that
uf(u) >c,(u*+ F(u)) for 0<u<a,<a.

PROPOSITION 3. Under the assumptions (9) and (10), +f 0<u(z, ¢,)
<ay, u(x,t) tends exponentially to zero when t temds to + oo, in the
maximum norm. Before entering into the proof, we remark that the
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same discussion in Proposition 2 shows that if u(w, t,)<a, u(x,t)
remains always less than a, for ¢>1%,.

PrROOF. We consider an energy form
oo 2 2
Ey(t)= f [_u_—[—ﬁ”_—l-F(u)] de,
J 2 2
Differentiating with respect to £, we have

Elt)=— f " Tut L f (u) +u?) d

<— f " Luz 4oyt F(u)] da< — e Ey(t), ¢,>0.
0

Consequently, we obtain
E\({) < E\(t)e .
By the Sobolev’s lemma, we conclude that u(x, t) tends exponentially
in the sense of uniform maximum norm.
Finally we assume the additional condition:

Fw)>0 (u<a), fw)P=cF(u) (w<0)
(11) {f’(u)<0 (a<u<p),
Fw)>0 (B<w),

where 0<a<p<b<B. We denote B the point such that F(B)=0,
F(u)>0 for u>B.

PROPOSITION 4. Denoting B, a constant greater than B, and
M, the set of x, (0<ax<-+ o) such that u(x, t)>B,, then the measure
of the set M, tends exponentially to zero when t tends to + oo under

conditions (9) and (11). Moreover under same condition, the integral

f u¥(x, t)dx tends also exponentially to 0 when t tends to -+ oo.
My

PROOF. We can construct a 2 times differentiable function @(u)
as follows:

D(u)=0 0<u<B, (b<B;<B)
O(u)=X(u) u>B,
where X(u) satisfies following conditions:
X(w)=>—L _X(u), X(u)>0, X"(4)>0 for u> B,
X'(B,)=X(B;)=0
there exists a positive constant ¢; such that X(u)>c;u® for u> B,.
In fact, taking ¢(u) such that satisfies ¢(u), ¢'(u), ¢”(u)>0
for u>B, ¢'(B;)=¢(B;)=0, and ¢(u)>cu®* for u>B, and setting
X(u):e?ciz—)go(u) we see X(u) satisfies (12). This means that &(w)
satisfies always @'(w)f (u)>c,@(u).
Now we use the following a new energy form

{ O(uw)=F(u) u<0
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(18) Et)= f " o(w)dw
0

(the summability of @(w) is evident by the fact that u* and ) are
summable). Differentiating with respect to ¢, we have

El(t)= f " 0wy de

0
- f " 0" (wyu2de— f " o' (w) f (w)d.
0 0
By the condition (12) and remarking that f(u)>f(B.) for u>B, we
have
E(t) < —ciEx(t).
That is E,(t) < Ey(0)e".
It follows that ¢, f uidx < f oc’(Z>(u)olac§]FJz(O)e‘%t.
M 0
Relating Proposition 3, we mention a remark.
REMARK. Considering an another energy form which is not posi-
tive definite, we can show the existence of a solution of (3) in the

case g(u)=0, which does not tends uniformly to zero when ¢ tends
to 4+ . In fact, taking

0 u2
Et)= [ [+ Fwds,
0
if u(x, t,) satisfies
[0 4 Fua, 1) |da<o, utw, 620,
0
then u(x, t) does not tend to zero uniformly; because, if not, for t>T,

(sufficiently large)

|u(z, t)|<e
for given e<a,<a, then by the same discussion in Proposition 2, we
have

0<u(x, t)<a,.

It signifies that ()= f w[’; +F(u)]dx20 by the condition (9).
0

That is a contradiction because we can show always that

E{t)=— [ uidz<0 (:21,).

0
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