158. On Fields of Division Points of Algebraic Function Fields of One Variable

By Makoto IsHidA
Department of Mathematics, Tsuda College, Tokyo
(Comm. by Zyoiti Suetuna, m.J.A., Dec. 12, 1963)

Let K be a field of algebraic functions of one variable over an algebraically closed constant field k. Let $D_{0}(K)$ be the group of all the divisors of degree 0 of K and $C(K)$ the divisor class group of K, i.e. the factor group of $D_{0}(K)$ by the subgroup consisting of all the divisors which are linearly equivalent to 0 (in notation: ~ 0). We use the additive notation for the group laws of $D_{0}(K)$ and $C(K)$. Let g be the genus of K. Then, for a natural number n prime to the characteristic of k, it is known that there exist exactly $n^{2 g}$ elements $c_{1}, \cdots, c_{N}\left(N=n^{2 g}\right)$ of $C(K)$ such that $n c_{i}=0$. We call these c_{i} the n-division points of $C(K)$.

Let D_{1}, \cdots, D_{N} be an arbitrary system of representative divisors of the classes c_{1}, \cdots, c_{N} (c_{i} is the divisor class containing D_{i}). Then $n D_{i}$ is linearly equivalent to 0 and so there exist N elements x_{1}, \cdots, x_{N} of K such that the divisor $\left(x_{i}\right)$ of x_{i} is equal to $n D_{i}$. We consider the subfield $K_{n}=k\left(x_{1}, \cdots, x_{N}\right)$ of K generated by x_{1}, \cdots, x_{N} over k. We shall call such a field K_{n} a field of n-division points of K. Since there are infinitely many choices of systems of representative divisors of the classes c_{i}, there are also, for a fixed given n, infinitely many fields of n-division points of K. We note that if $n>1, K_{n}$ has the transcendental degree 1 over k and so the degree $\left[K: K_{n}\right.$] is finite. In fact, for $n>1$, some c_{i} is not equal to 0 and so x_{i} is not a constant.

Now we shall prove the following
Theorem. Suppose $g \geqq 2$. Let $l \geqq 3$ be a prime number different from the characteristic of k. Then, for any field K_{l} of l-division points of K, K is purely inseparable over K_{l}. In particular, if the characteristic of k is 0 , we have $K=K_{l}$.

The case where $l=2$ (and the characteristic $=0$) was considered by Arima in [1]. We shall prove our theorem in the separable case by the same idea.

The proof of the theorem is divided into two cases.

1) First we consider the case where K is separable over K_{l}. We assume that $K \neq K_{l}$ and deduce a contradiction. Let g_{0} be the genus of K_{l}. Then, as $g \geqq 2$ and $K \neq K_{l}$, we have $g>g_{0}$ by the formula of Hurwitz. We denote by $\left(x_{i}\right)_{K}$ and $\left(x_{i}\right)_{x_{l}}$ the divisors of the function
x_{i} in K and K_{l} respectively. We also denote by f^{-1} the conorm mapping of divisors for the extension K / K_{l} (cf. Chevalley [2]). If $\left(x_{i}\right)_{k_{l}}=l e_{i}$ and $\left(x_{j}\right)_{K_{l}}=l e_{j}$ with divisors e_{i} and e_{j} of K_{l}, then, as in [1], e_{i} and $e_{j}(i \neq j)$ determines distinct l-division points of $C\left(K_{l}\right)$. In order to prove this statement, we use the fact that f^{-1} is a homomorphism and $f^{-1}\left(\left(x_{i}\right)_{K_{l}}\right)=\left(x_{i}\right)_{K}$. Hence at most $l^{2 g_{0}}$ divisors $\left(x_{i}\right)_{K_{l}}$ are of the form $l e_{i}$ and so there exist at least $l^{2 g}-l^{2 g_{0}}(>0)$ functions x_{j} such that the divisors $\left(x_{j}\right)_{K_{l}}$ have the form

$$
(*) \quad\left(x_{j}\right)_{K_{l}}=\cdots+t p+\cdots, \quad t \neq 0(\bmod l),
$$

where p is a prime divisor of K_{l} and the right hand side is the reduced expression. Such x_{j} and $\left(x_{j}\right)_{k_{l}}$ will be called an element and a divisor of (*)-type. Let $M=\left\{p_{1}, \cdots, p_{m}\right\}$ be the set of all the prime divisors p_{i} of K which appear in the reduced expression of some $\left(x_{j}\right)_{K_{l}}$ of (*)-type with the coefficient $\equiv 0(\bmod l)$. We write all the divisors $\left(x_{j}\right)_{K_{l}}$ of (*)-type as follows:

$$
\left(x_{j}\right)_{K_{l}}=a_{j}+l b_{j},
$$

where a_{j} is of the form $t_{j 1} p_{1}+\cdots+t_{j m} p_{m}$ with $0 \leqq t_{j i} \leqq l-1$ and $\left(t_{j 1}, \cdots, t_{j m}\right) \neq(0, \cdots, 0)$. If we have $a_{j}=a_{h}(j \neq h)$, then we have $l f^{-1}$ $\left(b_{j}-b_{h}\right)=f^{-1}\left(\left(x_{j}\right)_{K_{l}}-\left(x_{h}\right)_{K_{l}}\right)=\left(x_{j}\right)_{K}-\left(x_{h}\right)_{K}=l D_{j}-l D_{h}$ and so $f^{-1}\left(b_{j}-b_{h}\right)$ $=D_{i}-D_{h}$. So we have $b_{j}-b_{h}+0$ (not linearly equivalent to 0) but $l\left(b_{j}-b_{h}\right)=\left(x_{j}\right)_{K_{l}}-\left(x_{h}\right)_{K_{l}} \sim 0$. Hence we see that, for a given a_{j}, the number of $\left(x_{h}\right)_{K_{l}}$ with $a_{h}=a_{j}$ is at most equal to the number of the l-division points of $C\left(K_{l}\right)$ i.e. l^{290}. On the other hand, the number of such a_{j} is at most equal to $l^{m-1}-1$. In fact, since $\operatorname{deg}\left(a_{j}\right)=t_{j 1}+$ $\cdots+t_{j m}=\operatorname{deg}\left(\left(x_{j}\right)_{K_{l}}\right)-\operatorname{deg}\left(l b_{j}\right) \equiv 0(\bmod l), t_{j m}$ is uniquely determined as the least non-negative residue of $-\left(t_{j 1}+\cdots+t_{j, m-1}\right)$ modulo l; and so the number of a_{j} does not exceed the number of ($t_{j 1}, \cdots, t_{j, m-1}$) $\neq(0, \cdots, 0)$ with $0 \leqq t_{j i} \leqq l-1$ i.e. $l^{m-1}-1$. Therefore we have $l^{2 g}-l^{2 q_{0}} \leqq\left(\right.$ the number of x_{j} of (*)-type) $\leqq\left(l^{m-1}-1\right) \cdot l^{2 g_{0}}$ and so

$$
\begin{equation*}
m \geqq 2\left(g-g_{0}\right)+1 \tag{1}
\end{equation*}
$$

Let p be a prime divisor in M. Then there exists an element x_{j} of (*)-type such that $\left(x_{j}\right)_{K_{l}}=\cdots+t p+\cdots$ with $t \neq 0(\bmod l)$. Let $f^{-1}(p)$ $=t_{1} P_{1}+\cdots+t_{h} P_{h}$ be the reduced expression, where P_{i} is a prime divisor of K; then we have $l D_{j}=\left(x_{j}\right)_{K}=\cdots+t t_{1} P_{1}+\cdots+t t_{h} P_{h}+\cdots$. Hence l divides t_{j} and so the degree $n=t_{1}+\cdots+t_{n}$ of K over K_{l} and we have

$$
\begin{equation*}
\frac{t_{i}}{l} \geqq 1, \frac{n}{l} \geqq 1 . \tag{2}
\end{equation*}
$$

Moreover, denoting by $m\left(P_{i}\right)$ the differential exponent of P_{i} for the extension K / K_{l} (cf. [2]), we have

$$
\begin{equation*}
\sum_{i=1}^{n} m\left(P_{i}\right) \geqq n\left(1-\frac{1}{l}\right) . \tag{3}
\end{equation*}
$$

In fact, we have $\sum_{i} m\left(P_{i}\right) \geqq \sum_{i}\left(t_{i}-1\right)=n-h$ and, by (2), $h \leqq \sum_{i} \frac{t_{i}}{l}=\frac{n}{l}$. Therefore we have, by the formula of Hurwitz and by (1) and (3),

$$
\begin{aligned}
2 g-2 & \geqq n\left(2 g_{0}-2\right)+\left\{2\left(g-g_{0}\right)+1\right\} n\left(1-\frac{1}{l}\right) \\
& =\frac{n}{l}\left\{2(l-1) g+2 g_{0}-(l+1)\right\} .^{*)}
\end{aligned}
$$

Since $\frac{n}{l} \geqq 1, g_{0} \geqq 0$ and $2(l-1) g>l+1$, we have

$$
\begin{aligned}
& 2 g-2 \geqq 2(l-1) g-(l+1) \\
& 4 g-1 \geqq(2 g-1) l .
\end{aligned}
$$

and so
Consequently we have

$$
l \leqq \frac{4 g-1}{2 g-1}=2+\frac{1}{2 g-1}<3,
$$

which is a contradiction.
2) Next we consider the case where K is not separable over K_{l}. Let K^{\prime} be the maximal separable extension of K_{l} in K. Then K is purely inseparable over K^{\prime} and the genus of K^{\prime} is also g. Let $\left(x_{i}\right)_{K}$ be the divisor of x_{i} in K^{\prime} and $f^{\prime-1}$ the conorm mapping for the extension K / K^{\prime}. We have $f^{\prime-1}\left(\left(x_{i}\right)_{K^{\prime}}\right)=l D_{i}$ and so, taking the norm mapping f^{\prime}, we have $\left[K: K^{\prime}\right]\left(x_{i}\right)_{K^{\prime}}=l f^{\prime}\left(D_{i}\right)$. Since [$\left.K: K^{\prime}\right]$ is a power of the characteristic of k and is prime to l, we have $\left(x_{i}\right)_{K^{\prime}}=l D_{i}^{\prime}$ with some divisors D_{i}^{\prime} in K^{\prime}. Then, by a similar argument as above, we can show that $D_{1}^{\prime}, \cdots, D_{N}^{\prime}\left(N=l^{2 g}\right)$ represent all the l-division points of $C\left(K^{\prime}\right)$. Hence $K_{l}=k\left(x_{1}, \cdots, x_{N}\right)$ is also one of the fields of l-division points of K^{\prime}. Since K^{\prime} is separable over K_{l}, we have, by the first part of the proof, $K^{\prime}=K_{l}$ and so K is purely inseparable over K_{l}.

Thus the proof is completed.
Finally we shall give three remarks.
Remark 1. Let K_{n} be a field of n-division points of K and m a natural number dividing n. Then we can easily prove that there exists a field K_{m} of m-division points of K such that we have $K_{n} \supset K_{m}$. On the other hand, as in the first part of the proof, we can prove that if $K \neq K_{l^{n}}$ and K is separable over $K_{l^{n}}$ (l is a prime number \neq the characteristic p of k) then l^{n} divides the degree [$K: K_{l^{n}}$]. Hence, combining with the result of Arima for $l=2$, we see that K is purely inseparable over any field K_{n} of n-division points of K, provided n is divisible by a prime number $l(\neq p) \geqq 3$ or by 2^{3} (in the case $2 \neq p$).

Remark 2. When the characteristic p of k is positive, there occur, for the same prime number l, actually two cases: 1) $K=K_{l}$ and 2) $K \neq K_{l}$ (K / K_{l} is purely inseparable). We fix a divisor $A=P_{1}$ $+\cdots+P_{g}$ with $P_{i} \neq P_{j}(i \neq j)$ and take the divisors $D_{i}=B_{i}-A$ as the

[^0]representative divisors of l-division points c_{i}, where B_{i} is a positive divisor of degree g. Then the field K_{l} of l-division points of K obtained by the choice of such representative divisors coincides with K. In fact, for a non-constant x_{i}, each coefficient of a prime divisor in the pole of x_{i} is not divisible by p and so $x_{i}^{\frac{1}{p}}$ is not in K. Hence x_{i} is a separating element over k of K and so, as $K \supset K_{l} \supset k\left(x_{i}\right), K$ is separable over K_{l}, i.e. we have $K=K_{l}$. On the other hand, we consider $K^{\prime}=K^{p}$ and a field $K_{l}^{\prime}=k\left(y_{1}, \cdots, y_{N}\right)$ of l-division points of K^{\prime} $\left(N=l^{2 q}\right)$. Then, denoting $\left(y_{i}\right)_{K^{\prime}}=l D_{i}^{\prime}$, we have $\left(y_{i}\right)_{K}=l f^{\prime-1}\left(D_{i}^{\prime}\right)$, where $f^{\prime-1}$ is the conorm mapping for the extension K / K^{\prime}. If $f^{\prime-1}\left(D_{i}^{\prime}\right)$ $\sim f^{\prime-1}\left(D_{j}^{\prime}\right)$, then $f^{\prime-1}\left(D_{i}^{\prime}-D_{j}^{\prime}\right)=(z)$ with some element z in K. Then, taking the norm mapping f^{\prime}, we have $q\left(D_{i}^{\prime}-D_{j}^{\prime}\right)=\left(N_{K / K^{\prime}} z\right)$, where q is a power of p. Hence we have $q\left(D_{i}^{\prime}-D_{j}^{\prime}\right) \sim 0$ and, as $l\left(D_{i}^{\prime}-D_{j}^{\prime}\right)$ $=\left(y_{i}\right)_{K^{\prime}}-\left(y_{j}\right)_{K^{\prime}} \sim 0$, we have $D_{i}^{\prime}-D_{j}^{\prime} \sim 0$, which is a contradiction. Hence $K_{l}^{\prime}=k\left(y_{1}, \cdots, y_{N}\right)$ is also one of the fields of l-division points of K and we have $K \supseteqq K^{\prime} \supset K_{l}^{\prime}$.

Remark 3. From the results obtained above, we can show that K has two systems of generators over k, which have the following properties: We fix a prime number l which is $\geqq 3$ and different from the characteristic and we put $N=l^{2 g}$. 1) For given g distinct prime divisors P_{1}, \cdots, P_{g}, there exist N elements x_{1}, \cdots, x_{N} of K such that $K=k\left(x_{1}, \cdots, x_{N}\right)$ and the pole of x_{j} has the form $l P_{j 1}+\cdots+l P_{j s}$, $P_{j i} \in\left\{P_{1}, \cdots, P_{g}\right\}$. 2) For a given prime divisor P_{0}, there exist N elements y_{1}, \cdots, y_{N} of K such that $K=k\left(y_{1}, \cdots, y_{N}\right)$ and the pole of y_{j} has the form $l t_{j} P_{0}$.

References

[1] S. Arima: Certain generators of non-hyperelliptic fields of algebraic functions of genus $\geqq 3$, Proc. Japan Acad., 36, 6-9 (1960).
[2] C. Chevalley: Introduction to the Theory of Algebraic Functions of One Variable, New York (1951).

[^0]: *) For $l=2$, we have $2+1 /(g-3 / 2) \geqq n$, from which Arima proved his theorem.

