158. On Fields of Division Points of Algebraic Function Fields of One Variable

By Makoto Ishida

Department of Mathematics, Tsuda College, Tokyo (Comm. by Zyoiti SUETUNA, M.J.A., Dec. 12, 1963)

Let K be a field of algebraic functions of one variable over an algebraically closed constant field k. Let $D_0(K)$ be the group of all the divisors of degree 0 of K and C(K) the divisor class group of K, i.e. the factor group of $D_0(K)$ by the subgroup consisting of all the divisors which are linearly equivalent to 0 (in notation: ~ 0). We use the additive notation for the group laws of $D_0(K)$ and C(K). Let g be the genus of K. Then, for a natural number n prime to the characteristic of k, it is known that there exist exactly n^{2q} elements c_1, \dots, c_N ($N=n^{2q}$) of C(K) such that $nc_i=0$. We call these c_i the n-division points of C(K).

Let D_1, \dots, D_N be an arbitrary system of representative divisors of the classes c_1, \dots, c_N (c_i is the divisor class containing D_i). Then nD_i is linearly equivalent to 0 and so there exist N elements x_1, \dots, x_N of K such that the divisor (x_i) of x_i is equal to nD_i . We consider the subfield $K_n = k(x_1, \dots, x_N)$ of K generated by x_1, \dots, x_N over k. We shall call such a field K_n a field of n-division points of K. Since there are infinitely many choices of systems of representative divisors of the classes c_i , there are also, for a fixed given n, infinitely many fields of n-division points of K. We note that if n > 1, K_n has the transcendental degree 1 over k and so the degree $[K:K_n]$ is finite. In fact, for n > 1, some c_i is not equal to 0 and so x_i is not a constant.

Now we shall prove the following

Theorem. Suppose $g \ge 2$. Let $l \ge 3$ be a prime number different from the characteristic of k. Then, for any field K_i of l-division points of K, K is purely inseparable over K_i . In particular, if the characteristic of k is 0, we have $K=K_i$.

The case where l=2 (and the characteristic =0) was considered by Arima in [1]. We shall prove our theorem in the separable case by the same idea.

The proof of the theorem is divided into two cases.

1) First we consider the case where K is separable over K_i . We assume that $K \neq K_i$ and deduce a contradiction. Let g_0 be the genus of K_i . Then, as $g \ge 2$ and $K \neq K_i$, we have $g > g_0$ by the formula of Hurwitz. We denote by $(x_i)_K$ and $(x_i)_{K_i}$ the divisors of the function M. ISHIDA

 x_i in K and K_i respectively. We also denote by f^{-1} the conorm mapping of divisors for the extension K/K_i (cf. Chevalley [2]). If $(x_i)_{\kappa_l} = le_i$ and $(x_j)_{\kappa_l} = le_j$ with divisors e_i and e_j of K_i , then, as in [1], e_i and e_j $(i \neq j)$ determines distinct *l*-division points of $C(K_i)$. In order to prove this statement, we use the fact that f^{-1} is a homomorphism and $f^{-1}((x_i)_{\kappa_i}) = (x_i)_{\kappa}$. Hence at most l^{2g_0} divisors $(x_i)_{\kappa_i}$ are of the form le_i and so there exist at least $l^{2g} - l^{2g_0}$ (>0) functions x_j such that the divisors $(x_j)_{\kappa_i}$ have the form

$$(*) \qquad (x_j)_{\kappa_l} = \cdots + tp + \cdots, t \equiv 0 \pmod{l},$$

where p is a prime divisor of K_i and the right hand side is the reduced expression. Such x_j and $(x_j)_{K_l}$ will be called an element and a divisor of (*)-type. Let $M = \{p_1, \dots, p_m\}$ be the set of all the prime divisors p_i of K which appear in the reduced expression of some $(x_j)_{K_l}$ of (*)-type with the coefficient $\equiv 0 \pmod{l}$. We write all the divisors $(x_j)_{K_l}$ of (*)-type as follows:

$$(x_j)_{\kappa_j} = a_j + lb_j$$

where a_j is of the form $t_{j1}p_1 + \cdots + t_{jm}p_m$ with $0 \le t_{ji} \le l-1$ and $(t_{j1}, \cdots, t_{jm}) \ne (0, \cdots, 0)$. If we have $a_j = a_h \ (j \ne h)$, then we have lf^{-1} $(b_j - b_h) = f^{-1}((x_j)_{\kappa_l} - (x_h)_{\kappa_l}) = (x_j)_{\kappa} - (x_h)_{\kappa} = lD_j - lD_h$ and so $f^{-1}(b_j - b_h) = D_i - D_h$. So we have $b_j - b_h + 0$ (not linearly equivalent to 0) but $l(b_j - b_h) = (x_j)_{\kappa_l} - (x_h)_{\kappa_l} \sim 0$. Hence we see that, for a given a_j , the number of $(x_h)_{\kappa_l}$ with $a_h = a_j$ is at most equal to the number of the *l*-division points of $C(K_l)$ i.e. l^{2g_0} . On the other hand, the number of such a_j is at most equal to $l^{m-1} - 1$. In fact, since $\deg(a_j) = t_{j1} + \cdots + t_{jm} = \deg((x_j)_{\kappa_l}) - \deg(lb_j) \equiv 0 \pmod{l}$, t_{jm} is uniquely determined as the least non-negative residue of $-(t_{j1} + \cdots + t_{j,m-1}) \mod{l}$; and so the number of a_j does not exceed the number of $(t_{j1}, \cdots, t_{j,m-1}) \neq (0, \cdots, 0)$ with $0 \le t_{ji} \le l-1$ i.e. $l^{m-1} - 1$. Therefore we have

 $l^{2g}-l^{2g_0}{\leq}(\text{the number of }x_j\text{ of }(*)\text{-type}){\leq}(l^{m-1}-1){\cdot}l^{2g_0}$ and so

(1)
$$m \ge 2(g-g_0)+1.$$

Let p be a prime divisor in M. Then there exists an element x_j of (*)-type such that $(x_j)_{\kappa_l} = \cdots + tp + \cdots$ with $t \equiv 0 \pmod{l}$. Let $f^{-1}(p) = t_1P_1 + \cdots + t_hP_h$ be the reduced expression, where P_i is a prime divisor of K; then we have $lD_j = (x_j)_K = \cdots + tt_1P_1 + \cdots + tt_hP_h + \cdots$. Hence l divides t_j and so the degree $n = t_1 + \cdots + t_h$ of K over K_i and we have

$$(2) \qquad \qquad \frac{t_i}{l} \ge 1, \ \frac{n}{l} \ge 1.$$

Moreover, denoting by $m(P_i)$ the differential exponent of P_i for the extension K/K_i (cf. [2]), we have

$$(3) \qquad \qquad \sum_{i=1}^{h} m(P_i) \geq n \left(1 - \frac{1}{l}\right).$$

In fact, we have $\sum_{i} m(P_i) \ge \sum_{i} (t_i - 1) = n - h$ and, by (2), $h \le \sum_{i} \frac{t_i}{l} = \frac{n}{l}$. Therefore we have, by the formula of Hurwitz and by (1) and (3),

$$2g-2 \ge n(2g_0-2) + \{2(g-g_0)+1\}n\left(1-\frac{1}{l}\right)$$
$$= \frac{n}{l}\{2(l-1)g+2g_0-(l+1)\}.^{*}$$

Since $\frac{n}{l} \ge 1$, $g_0 \ge 0$ and 2(l-1)g > l+1, we have

$$2g-2 \ge 2(l-1)g-(l+1)$$

and so

$$4g-1 \ge (2g-1)l.$$

Consequently we have

$$l\!\leq\!\frac{4g\!-\!1}{2g\!-\!1}\!=\!2\!+\!\frac{1}{2g\!-\!1}\!<\!3$$
 ,

which is a contradiction.

2) Next we consider the case where K is not separable over K_i . Let K' be the maximal separable extension of K_i in K. Then K is purely inseparable over K' and the genus of K' is also g. Let $(x_i)_K$ be the divisor of x_i in K' and f'^{-1} the conorm mapping for the extension K/K'. We have $f'^{-1}((x_i)_{K'})=lD_i$ and so, taking the norm mapping f', we have $[K:K'](x_i)_{K'}=lf'(D_i)$. Since [K:K'] is a power of the characteristic of k and is prime to l, we have $(x_i)_{K'}=lD'_i$ with some divisors D'_i in K'. Then, by a similar argument as above, we can show that $D'_1, \dots, D'_N(N=l^{2g})$ represent all the l-division points of C(K'). Hence $K_i = k(x_1, \dots, x_N)$ is also one of the fields of l-division points of K'. Since K' is separable over K_i , we have, by the first part of the proof, $K' = K_i$ and so K is purely inseparable over K_i .

Thus the proof is completed.

Finally we shall give three remarks.

REMARK 1. Let K_n be a field of *n*-division points of K and ma natural number dividing n. Then we can easily prove that there exists a field K_m of *m*-division points of K such that we have $K_n \supset K_m$. On the other hand, as in the first part of the proof, we can prove that if $K \neq K_{l^n}$ and K is separable over K_{l^n} (l is a prime number \neq the characteristic p of k) then l^n divides the degree $[K: K_{l^n}]$. Hence, combining with the result of Arima for l=2, we see that K is purely inseparable over any field K_n of *n*-division points of K, provided nis divisible by a prime number $l(\neq p) \geq 3$ or by 2^3 (in the case $2 \neq p$).

REMARK 2. When the characteristic p of k is positive, there occur, for the same prime number l, actually two cases: 1) $K=K_l$ and 2) $K \neq K_l$ (K/K_l is purely inseparable). We fix a divisor $A=P_1$ $+\cdots+P_g$ with $P_i \neq P_j$ ($i \neq j$) and take the divisors $D_i=B_i-A$ as the

^{*)} For l=2, we have $2+1/(g-3/2) \ge n$, from which Arima proved his theorem.

representative divisors of *l*-division points c_i , where B_i is a positive divisor of degree g. Then the field K_l of l-division points of K obtained by the choice of such representative divisors coincides with K. In fact, for a non-constant x_i , each coefficient of a prime divisor in the pole of x_i is not divisible by p and so $x_i^{\frac{1}{p}}$ is not in K. Hence x_i is a separating element over k of K and so, as $K \supset K_i \supset k(x_i)$, K is separable over K_i , i.e. we have $K = K_i$. On the other hand, we consider $K' = K^p$ and a field $K'_l = k(y_1, \dots, y_N)$ of *l*-division points of K' $(N=l^{2q})$. Then, denoting $(y_i)_{\kappa'}=lD'_i$, we have $(y_i)_{\kappa}=lf'^{-1}(D'_i)$, where f'^{-1} is the conorm mapping for the extension K/K'. If $f'^{-1}(D'_i)$ $\sim f'^{-1}(D'_j)$, then $f'^{-1}(D'_i - D'_j) = (z)$ with some element z in K. Then, taking the norm mapping f', we have $q(D'_i - D'_j) = (N_{K/K'}z)$, where q is a power of p. Hence we have $q(D'_i - D'_j) \sim 0$ and, as $l(D'_i - D'_j)$ $=(y_i)_{K'}-(y_j)_{K'}\sim 0$, we have $D'_i-D'_j\sim 0$, which is a contradiction. Hence $K'_{l} = k(y_{1}, \cdots, y_{N})$ is also one of the fields of *l*-division points of K and we have $K \supseteq K' \supset K'_i$.

REMARK 3. From the results obtained above, we can show that K has two systems of generators over k, which have the following properties: We fix a prime number l which is ≥ 3 and different from the characteristic and we put $N = l^{2g}$. 1) For given g distinct prime divisors P_1, \dots, P_g , there exist N elements x_1, \dots, x_N of K such that $K = k(x_1, \dots, x_N)$ and the pole of x_j has the form $lP_{j1} + \dots + lP_{js}$, $P_{ji} \in \{P_1, \dots, P_g\}$. 2) For a given prime divisor P_0 , there exist Nelements y_1, \dots, y_N of K such that $K = k(y_1, \dots, y_N)$ and the pole of y_j has the form lt_jP_0 .

References

- S. Arima: Certain generators of non-hyperelliptic fields of algebraic functions of genus ≥3, Proc. Japan Acad., 36, 6-9 (1960).
- [2] C. Chevalley: Introduction to the Theory of Algebraic Functions of One Variable, New York (1951).