156. On Bochner Transforms. II

A Generalization Attached to $M(n, R)$ and "an" n-Dimensional Bessel Function

By Koziro Iwasaki
Musashi Institute of Technology, Tokyo
(Comm. by Zyoiti Suetuna, m.J.A., Dec. 12, 1963)

1. Introduction. The concept of Bochner transforms is a generalization of Fourier transforms of radial functions. (Bochner [1] and Iwasaki [2].) In this paper we shall define Bochner transforms attached to the space of matrices $M(n, \boldsymbol{R})$ and investigate some of its properties. As an analogy to the case of the one-dimensional Euclidean space we get " n-dimensional Bessel functions". We shall give Bessel differential equations for these functions.

Probably the Bochner transforms have a close relation to Siegel modular functions. We shall discuss in this direction elsewhere.
2. Definitions and notations. We denote by $\boldsymbol{P}_{0}=\boldsymbol{P}_{0}(n, \boldsymbol{R})$ the space of non-negative symmetric matrices of degree n, by \boldsymbol{P} the set of strictly positive elements in \boldsymbol{P}_{0} and M_{k} the space of continuous functions on \boldsymbol{P}_{0} which is C^{∞} on \boldsymbol{P}, invariant by the automorphism of $\boldsymbol{P}_{0}, x \rightarrow{ }^{t} u x u$ where $u \in U=\boldsymbol{O}(n, \boldsymbol{R})$, and $\int_{\boldsymbol{P}}(\operatorname{det} x)^{\frac{k}{2}}|\varphi(x)|^{2} d x$ is convergent. Now

Definition. The Bochner transform $T=T_{\lambda, k}^{n}$ is a linear operator on M_{k} which satisfies the following conditions (B):
$\left(\mathrm{B}_{1}\right)$ the function $\varepsilon(x)=\exp \left(-\frac{2 \pi}{\lambda} \operatorname{tr} x\right)$ is mapped to itself by T,
($\left.\mathrm{B}_{2}\right) \quad \int_{U} \varphi\left({ }^{t} w^{t} u x u w\right) d u$ with $\varphi \in M_{k}$ and $w \in G L(n, \boldsymbol{R})$ is mapped by T, as a function of x, to $\int_{U} T \varphi\left(w^{-1} u x u^{t} w^{-1}\right) d u \cdot|\operatorname{det} w|^{-k}\binom{d u$ is the Haar measure on $U}{$ normalized by $\int_{U} d u=1}$,
$\left(\mathrm{B}_{3}\right) \quad \int_{\boldsymbol{P}}(\operatorname{det} x)^{\frac{k}{2}} \varphi(x) \psi(x) d x=\int_{\boldsymbol{P}}(\operatorname{det} x)^{\frac{k}{2}} T \varphi(x) T \psi(x) d x$, where $\varphi, \psi \in M_{k}$ and $d x$ is a measure on \boldsymbol{P} invariant by $x \rightarrow{ }^{t} w x w$ (see [2]).

Any element φ of M_{k} is a spherical function on \boldsymbol{P}, therefore it has the Fourier transform in Gelfand-Selberg sense. On our stand point it may be called the Mellin transform of φ and it is defined as follows (Selberg [3] pp. 56-59):

If x belongs to \boldsymbol{P} it can be represented uniquely as ${ }^{t} t t$, where t is a member of the space of upper trigonal matrices with positive diagonal elements $t_{i}=t_{i i}$. And

$$
\begin{aligned}
\varphi(s) & =\varphi\left(s_{1}, s_{2}, \cdots, s_{n}\right)=\int_{T} \varphi\left({ }^{t} t t\right) t_{1}^{s_{1}} t_{2}^{s_{2}+1} \cdots t_{n}^{s_{n}+n-1} d t \\
& =\prod_{i=1}^{n} \int_{0}^{\infty} d t_{i} \prod_{i<j} \int_{-\infty}^{\infty} d t_{i j} \varphi(t t) \cdot t_{1}^{s_{1}-1} \cdots t_{n}^{s_{n}-1}
\end{aligned}
$$

is the Mellin transform of $\varphi(x)$.
By the general theory of spherical functions we know that the ring \boldsymbol{D} of invariant differential operators attached to \boldsymbol{P} has the generators $\Delta_{1}, \cdots, \Delta_{n}$ such that

$$
\Delta_{i} \varphi(s)=\sigma_{i}(s) \varphi(s)
$$

where $\sigma_{i}(s)$ is the fundamental symmetric polynomial in s_{1}, \cdots, s_{n} of degree i.
3. Properties. We shall transform the conditions (B) in formulas in s.

By (B_{2}) and (B_{3}) we have

$$
\begin{aligned}
& \int_{\boldsymbol{P}}(\operatorname{det} x)^{\frac{b^{2}}{2}} \varphi(x) \psi\left({ }^{t} w x w\right) d x \\
& =|\operatorname{det} w|^{-k} \int_{\boldsymbol{P}}(\operatorname{det} x)^{\frac{k}{2}} T \varphi(x) T \psi\left(w^{-1} x^{t} w^{-1}\right) d x
\end{aligned}
$$

Calculating the Mellin tranform (strictly speaking the convolution with the zonal spherical function $\omega_{s}(w)$) of the both sides as function in w, we get

$$
\varphi(k-s) \psi(s)=T \varphi(s) T \psi(k-s)
$$

where $k-s$ means $\left(k-s_{1}, \cdots, k-s_{n}\right)$.
If we take $\varepsilon(x)$ in $\left(\mathrm{B}_{1}\right)$ as $\psi(x)$ and use the condition $\left(\mathrm{B}_{1}\right)$, the following equality holds:

$$
\begin{equation*}
T \varphi(s)=\left(\frac{2 \pi}{\lambda}\right)^{\frac{n k}{2}-\left(s_{1}+\cdots+s_{n}\right)} \frac{\Gamma\left(\frac{s_{1}}{2}\right) \cdots \Gamma\left(\frac{s_{n}}{2}\right)}{\Gamma\left(\frac{k-s_{1}}{2}\right) \cdots \Gamma\left(\frac{k-s_{n}}{2}\right)} \varphi(k-s) \tag{1}
\end{equation*}
$$

Proposition 1. $T \varphi(x)$ is equal to

$$
\int_{\boldsymbol{P}} J\left({ }^{t} t y t\right) \varphi(y)(\operatorname{det} y)^{\frac{k}{2}} d y
$$

where ${ }^{t} t t=x$ and $J(x)=J_{\lambda, k}^{n}(x)$ is the function whose Mellin transform is

$$
\left(\frac{2 \pi}{\lambda}\right)^{\frac{n k}{2}-\left(s_{1}+\cdots+s_{n}\right)} \frac{\Gamma\left(\frac{s_{1}}{2}\right) \cdots \Gamma\left(\frac{s_{n}}{2}\right)}{\Gamma\left(\frac{k-s_{1}}{2}\right) \cdots \Gamma\left(\frac{k-s_{n}}{2}\right)}
$$

Corollary. $T \varphi$ belongs to M_{k} and the operator T is continuous with respect to the norm

$$
\|\varphi\|=\left(\int_{\boldsymbol{P}}(\operatorname{det} x)^{\frac{k}{2}}|\varphi(x)|^{2} d x\right)^{\frac{1}{2}} .
$$

Proposition 2. T^{2} is the identical mapping.
Proposition 3. $\Delta_{n} T_{k} \varphi(x)=\left(\frac{4 \pi}{\lambda}\right)^{n}(\operatorname{det} x) T_{k+2} \varphi(x)$.
Proof. For

$$
\Delta_{n} T_{k} \varphi(s)=\left(\frac{2 \pi}{\lambda}\right)^{\frac{n k}{2}-\left(s_{1}+\cdots+s_{n}\right)} \cdot 2^{n} \cdot \frac{\Gamma\left(\frac{s_{1}+2}{2}\right) \cdots \Gamma\left(\frac{s_{n}+2}{2}\right)}{\Gamma\left(\frac{k-s_{1}}{2}\right) \cdots \Gamma\left(\frac{k-s_{n}}{2}\right)} \varphi(k-s) .
$$

Proposition 4. If $\varphi(x) \in M_{k}$ is a common eigenfunction for $T_{\lambda, k}^{n}$ with arbitrary $k>0$, then $\varphi(x)$ is of the form $c \exp \left(-\frac{2 \pi}{\lambda} \operatorname{tr} x\right)$.

Proof. By Proposition 2 we have

$$
\varphi(s)= \pm T_{k} \varphi(s) \text { for } k>0 \text {, }
$$

and by the equality (1) $\left(\frac{2 \pi}{\lambda}\right)^{\frac{\left(k-s_{1}\right)+\cdots+\left(k-s_{n}\right)}{2}} \cdot \frac{\varphi(k-s)}{\Gamma\left(\frac{k-s_{1}}{2}\right) \cdots \Gamma\left(\frac{k-s_{n}}{2}\right)}$
must be independent of k. Therefore

$$
\varphi(s)=c\left(\frac{2 \pi}{\lambda}\right)^{-\frac{s_{1}+\cdots+s_{n}}{2}} \Gamma\left(\frac{s_{1}}{2}\right) \cdots \Gamma\left(\frac{s_{n}}{2}\right) .
$$

Proposition 5. If $k>0$ the operator defined by the formula (1) is a continuous linear mapping on M_{k} with respect to the norm

$$
\|\varphi\|^{2}=\int_{\boldsymbol{P}} \operatorname{det} x^{\frac{k}{2}}|\varphi(x)|^{2} d x .
$$

4. Higher dimensional Bessel functions. In the case $n=1$ the function $J_{\lambda, k}^{1}\left(t^{2}\right)$ is equal to $\left(\frac{4 \pi}{\lambda}\right) t^{1-\frac{k}{2}} J_{\frac{k}{2}-1}\left(\frac{4 \pi}{\lambda} t\right)$. As an analogy to this case we define the Bessel function of dimension n by the equality

$$
\left(\frac{4 \pi}{\lambda}\right)(\operatorname{det} x)^{\frac{-\nu}{2}} J_{\nu}^{n}\left(\left(\frac{4 \pi}{\lambda}\right)^{2} x\right)=J_{\lambda, 2 \nu+2}^{n}(x)
$$

for $x \in \boldsymbol{P}_{0}$. (Note that $J_{\nu}(x)=J_{\nu}^{1}\left(x^{2}\right)$!) Then we have

$$
\begin{aligned}
& \qquad \begin{array}{l}
\left(\frac{4 \pi}{\lambda}\right)^{n-\left(s_{1}+\cdots+s_{n}-n \nu\right)} J_{\nu}^{n}(s-\nu) \\
=\left(\frac{4 \pi}{\lambda}\right)^{\frac{n(2 \nu+2)}{2}-\left(s_{1}+\cdots+s_{n}\right)} \frac{\Gamma\left(\frac{s_{1}}{2}\right) \cdots \Gamma\left(\frac{s_{n}}{2}\right)}{\Gamma\left(\nu+1-\frac{s_{1}}{2}\right) \cdots \Gamma\left(\nu+1-\frac{s_{n}}{2}\right)} \\
\text { Proposition 6. } \quad J_{\nu}^{n}(s)=\frac{\Gamma\left(\frac{s_{1}+\nu}{2}\right) \cdots \Gamma\left(\frac{s_{n}+\nu}{2}\right)}{\Gamma\left(\frac{\nu+2-s_{1}}{2}\right) \cdots \Gamma\left(\frac{\nu+2-s_{n}}{2}\right)}
\end{array} .
\end{aligned}
$$

We have now a few formulas similar to the ordinary Bessel functions.

Proposition 7.
a) $\Delta_{n}\left((\operatorname{det} x)^{-\frac{\nu}{2}} J_{\nu}^{n}(x)\right)=2^{n}(\operatorname{det} x)^{-\frac{\nu-1}{2}} J_{\nu+1}^{n}(x)$,
b) $\Delta_{n}\left((\operatorname{det} x)^{\frac{\nu-1}{2}} J_{\nu}^{n}(x)\right)=(-2)^{n} \operatorname{det} x^{\frac{\nu+1}{2}} J_{\nu-1}^{n}(x)$.

Proof of a). The Mellin transform of both sides are

$$
s_{1} \cdots s_{n} \frac{\Gamma\left(\frac{s_{1}}{2}\right) \cdots}{\Gamma\left(\frac{2 \nu+2-s_{1}}{2}\right) \cdots} \quad \text { and } \quad 2^{n} \cdot \frac{\Gamma\left(\frac{s_{1}+2}{2}\right) \cdots}{\Gamma\left(\frac{2 \nu+2-s_{1}}{2}\right) \cdots} .
$$

Moreover we have the following Bessel differential equation:

Proposition 8.

$$
\begin{aligned}
& \left(\Delta_{n}-\nu \Delta_{n-1}+\nu^{2} \Delta_{n-2}-\cdots+(-\nu)^{n-1} \Delta_{1}+(-\nu)^{n}\right) \\
& \quad\left(\Delta_{n}+\nu \Delta_{n-1}+\cdots+\nu^{n-1} \Delta_{1}+\nu^{n}\right) J_{\nu}^{n}=(-4)^{n} \operatorname{det} x \cdot J_{\nu}^{n} .
\end{aligned}
$$

Proof. $\left(s_{1}-\nu\right) \cdots\left(s_{n}-\nu\right)\left(s_{1}+\nu\right) \cdots\left(s_{n}+\nu\right) J_{\nu}^{n}(s)=(-4)^{n} J_{\nu}^{n}(s+2)$.

References

[1] S. Bochner and K. Chandrasekharan: Fourier Transforms, Princeton (1949).
[2] K. Iwasaki: On Bochner transforms, Proc. Japan Acad., 39(5), 257-262 (1963).
[3] A. Selberg: Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc., 20, 47-87 (1956).

