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Introduction. There are many sets of postulates for Boolean
algebra given by various scholars [1]. Moreover, M. H. Stone has
shown among other things, that one can subsume the theory of
Boolean algebra under the theory of Boolean ring [2]. The sets of
postulates for Boolean ring (or generalized Boolean algebra) were
given by Stabler [3] and Bernstein [4]. On the other hand, Newman
has given the most remarkable system known as Newman algebra
[5, 6] including both Boolean algebra and Boolean ring.

We shall give in this paper two kinds of postulate-sets for
Newman algebra as Set I and Set II. The idea of the postulates of
Set I was suggested to me by Bernstein’s dual-symmetric definition
of Boolean algebra [7] where the distributive law aV(bc)=(aVvb)(aVvec)
is eliminated. In Set II, we have replaced the commutative laws
for addition and multiplication by axioms Bj, C’, and C; below. This
set has not an exactly dual, but a nearly dual form. And this set
has a form quite close to that of the postulates of Newman algebra
due to Birkhoff: our axioms B,;, B! are just the same as the axioms
N1, N1’ of Birkhoff [6: p. 1657, our C{, C, are nearly like N2, N3,
and our E’ corresponds to N4.

The paper consists of three paragraphs. The first gives the
postulates of Set I and Set II and shows that each set is equivalent
with the system of Newman algebra [6]. Four kinds of postulate-sets
for Boolean algebras, Set I,, Set IF, Set II,, and Set IIF¥ will be
derived from Set I and Set II respectively by Newman’s decomposition
theorem. The second deals with the construction of some independence-
systems with eight elements. In constructing these systems we give
several theorems where we shall see how helpful Stone’s theory of
Boolean ring [2] will also be for our purpose. The third gives the
independence proofs for the four new sets for Boolean algebras.

In concluding, we should like to give the following remark.
G. D. Birkhoff and G. Birkhoff say in the introduction of their paper,
that they have made Newman’s argument such shorter and simpler
in adding a dependent postulate 0+a=a. Our Sets I and II are
independent sets and fit for Birkhoff’s argument. As such our sets
may be regarded as one of the suitable systems to characterize



No. 2] On Postulate-Sets for Newman Algebra and Boolean Algebra. I 77

Newman algebra.

1. Sets I and II. The postulates of sets I and II are the pro-
positions below on a class K, two binary operations 4+, X and a
unary operation ' (in the postulates that are not existence postulates
supply the restriction: ¢f the elements indicated are in K).

It will be noted that in the present sets we shall replace Bern-
stein’s “v” by “+”, and for the sake of brevity we shall write ab
for axb, and moreover, name the postulates A, A, etc. after Bern-
stein [7]. It is also to be remarked in our postulate E’ on the unary
operation ', the uniqueness of a’ is not required (in spite of the usual
definition of the “unary operation”). This uniqueness will be deduced
from the other postulates.

Set 1

F’. K is not empty.

D. If a,beK, then an element a+bcK is uniquely determined.

D,. If a,bcK, then an element abe K is uniquely determined.

E’. To every acK corresponds at least one a’cK.

A, a+b=b+a.

A,. ab=ba.
B.. a(b+c)=ab+ac.
C. atbb=a.

C. a(+b)=a.
Set II

¥, D, D,, E/, B, as mentioned above.

B.. (a+bdec=ac+bec.

C. a+bb=bb+a=qa.

C.. a(+b)=("+ba=a.

It is easy to see that the Newman algebra according to Birkhoff’s
definition® satisfies the postulates of Set I as well as of Set IL

Now it remains to show that the postulates of Newman algebra
can be deduced from Set I and Set II respectively. This is shown
by the following theorems. In the proofs of these theorems we shall
enumerate the names of postulates B, C/, etec. used in the trans-
formation of formulas. If more than one postulates, e.g. B, and C’
are used in one step, we shall write B;-C’. The use of postulates
F, D, D,, and E’ will be implicit, except for six cases where they
are noted for emphasis.

Theorem 0. (a¢’)’=a for all ¢ and all (a’)".

(We write o' for (a’) for the sake of brevity.)

Proof. a”’=a"(a’+a)=a"a’+a"a=a"a+a’a=(a"+a")a=a by C,,
B, A-C-C, B-A,, A,-C, in Set I, and by C,, B,, C'-C/, B, C/ in Set IIL

Theorem 1. a’ is uniquely determined.

Proof. Let a] and a) be two elements corresponding to a by
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operation ’ (by E’), then

ai=ai(as+a)=alaj+aja=ala=ala;+(at) at=(a]+ (a}))a}=(a)+a)as=a)}
by C;, B, C, C, B;-A,, Theorem 0, A,-C, in Set I, and by C], B, C/,
C’, B}, Theorem 0, C, in Set IIL

Theorem 2. a-+a'=a’+a=>b"+b for any a, be K, thus the element
a+a’=a'+a does not depend on a.

Proof. For Set I: a+a'=a'+a=(a'+a)® +b)=®"+b)(a' +a)=b'
+b by A, C;, A;, C, and E’-Theorem 1-D.

For Set IL: a-+a'=(a"+a')a +a)=a +a=(b"+bd)a+a')=b+b
by Theorem 0-C’, C,, C, C; and E’-Theorem 1-D.

Definition 1. This element a’'+a=a+a’ is denoted by 1.

Theorem 2;,. aa’=a’a=b'db for any a,bec K, thus the element
aa’=a’a does not depend on a.

Proof. For Set I: aa'=ada=a’a+bd=bb+a’a=bb by A,, C, A,
C and E’-Theorem 1-D,.

For Set II: aa’=a'’a’+a’a=a’a=a’a+b'b=>b'd by Theorem 0-C/,
C’, ¢, C' and E'-Theorem 1-D,.

Definition 2. This element a’a=aa’ is denoted by 0.

Theorem 3. H1, al=a.

Proof. This follows from C,-Definition 1 in Set I and from C,’-
Definition 1 in Set II.

Theorem 4. A0, a+0=04+a=a.

Proof. This follows from C-Definition 2 in Set I and from C’-
Definition 2 in Set II.

Theorem 5. Ha', a+a’=1 and aa’=0.

Proof. This follows from E’, Definition 1, Definition 2 in both
Sets I and II.

Thus we come to the conclusion that each of these sets, Set I
and Set II, is equivalent to the postulates of Newman algebra.

The Newman algebra K is, as is well known, decomposed into the
direct union of two subalgebras K, K, consisting respectively of “even”-
and “odd”-elements. K, is a Boolean algebra and K, satisfies all
postulates for the Boolean ring with unity as given by Stone [2: p. 39 ]
except the associativity of multiplication. The following example of
Newman algebra shows that K, can be really non-associative.

~

+[01abcalfry X{01labecalpfr ala
0|01labcalpry 000000000 01
1/10aB87rabdec 1/ 01labcalfy 110
alaal0y Blchd al0aalllaa a ! «
b bBrO0Oacla b 0b1b1B80S8 b|pB
cler BalObal ¢c|0cllcyy O c |7
alaalecdb0yr B al! 0a0Brayp ala
BlBbeclay0a Bl10Baly 7y Ba B1b
rlrebalfBal 7107rapBO0Bar 7] ¢
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We shall call an algebra satisfying all postulates for the Boolean
ring with unity except the associative law for multiplication a quasi-
Boolean ring, and by a generalized quasi-Boolean ring we shall
mean an algebra which satisfies all postulates for the Boolean ring
except for the associative law for multiplication, the existence of
unity not being required.

Theorem 6. If a-+a=0 holds for every element a of Newman
algebra, then (a’4a)+a=a’ also holds for every a and every a’ of
this Newman algebra. The converse also holds. When each of these
conditions holds then the Newman algebra is a quasi-Boolean ring.

Proof. It is known that if a+a=0 holds identically in a New-
man algebra, this Newman algebra is a quasi-Boolean ring [5]. There-
fore we have (a'+a)+a=a+(a+a)=a+0=a’. Conversely, if
(¢/+a)+a=a’ holds identically in a Newman algebra, then we have
0=d'a={(a’+a)+a}a=(a'+a)a+aa=(a'a+aa)+a=(0+a)+a=a+a
[6].

Starting from our sets I and II, we obtain by the direct de-
composition theorems [6] and by Theorem 6 the following sets I, II;
for the Boolean algebra and I, II, for the quasi-Boolean ring:

Set I ¥, D, D, E, A A, B, B, C, C.

Set II: ¥, D, D, E, B, B, B, C, C.

Set I F, D, D, E, A, A, B, C, C, G.

Set II,; ¥, D, D, E, B, B, C, C, G.
where B/, G mean the following postulates:

B. at+a=a.

G. (o' +a)+a=a'.

If we add to Set I, and Set II, the postulate of the associativity

H. (aa)b=a(ad) [4]
respectively, then we obtain the postulate-sets for the Boolean ring
with unity. We shall denote these postulate-sets I¥, Il respectively.

2. On the construction of some independence-systems. We shall
give in the following paragraph 3 the independence proofs of each
postulate in Set I,, Set II,, Set I¥, Set II} respectively. These proofs
may be given by simple independence systems with at most four
elements, except for the postulates A,, B, B H for which eight-
element systems are needed. In this paragraph, we shall show that
these relatively complicated systems can be constructed in more or
less systematic manners.

Theorem 7. If the associative law for multiplication holds in a
finite generalized quasi-Boolean ring R, then R has a unit.

Proof. If the associative law for multiplication holds in a finite
generalized quasi-Boolean ring R, then it is evident from the defini-
tion that R is a finite Boolean ring. Let a, a,---,ay be all the
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elements of R. Then it is easy to see that the sum of N elementary
symmetric functions of ay, as--+,ay is a unit of R [2: p. 427]. Thus
the theorem is proved.

Definition 8. We shall call an element a of a generalized quasi-
Boolean ring R ‘“a strong zero-devisor in R” if a0 and there
exists an element b0 of R such that ab=0 or ba=0.

Theorem 8. If the associative law for multiplication holds in a
finite generalized quasi-Boolean ring R with more than two elements,
then R contains a strong zero-divisor.

Proof. By Theorem 7 R is a finite Boolean ring with unit, and
the cardinal number of R is 2" [2], the unit will be denoted as 1. R
has an element a such that a0 and also a1, then we have a+1x0
and a(a+1)=aa+al=a+a=0, Thus e is a strong zero-divisor and
the theorem is proved.

Theorem 9. The cardinal number N of a finite non-associative
generalized quasi-Boolean ring R is a power of 2, 2™ (m=2),

Proof. R forms an additive abelian group of N elements in
which a-+a=0 holds for any element a. Therefore we can follow
the proof which was given by Stone [2: pp. 42-43], and the con-
dition m=2 results from the non-associativity.

Theorem 10. Every generalized quasi-Boolean ring R can be
imbedded in a quasi-Boolean ring S, in such a manner that S is unique
in the following sense: if T is a quasi-Boolean ring containing K,
then T contains also a quasi-Boolean ring S* isomorphic to S and
containing R.

Proof. Of cause in discussing the possibility of imbedding a
generalized quasi-Boolean ring R in a quasi-Boolean ring S we may
disregard the trivial case where R has a unit and S coincides with
R. We first provide an abstract element ¢, distinet from those of
R, and define

ee=¢, ea=ac=a, &+0=0+c=¢, ¢c+e=0,
0 being the zero element and a any element of B. We observe that
the elements 0 and ¢ constitute a two-element Boolean ring I. Now
we let S the direct union RXI of pairs (a, «) where acR, acl and
a=0 or a=¢, defining the equality of (a,a) and (b, 8) as a=b and
a=p. We define the operations of addition and multiplication in S
by
(@, @)+, B)=(a+Db, a+p),
(a, a)(b, B)=(ab+ab+aB, ap).

It is easily verified that under these operations the class S of pairs
(a, @) is a quasi-Boolean ring with (0, ¢) as unit. To prove the unique-
ness of S we can follow the proof of Stone for his Theorem 1
[2: pp. 40-427, as the associative law for multiplication in R is used
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only to show that the same law holds in S.

Now let us try to construct a non-associative generalized quasi-
Boolean ring. If such a ring exists, it has by Theorem 9 a cardinal
number 2™, m=2, and the addition group of the type (2,2,-:-,2).
So, if we construct such a ring with four elements, it is a “smallest”
one in the sense that it can not have any proper subring with the
same property. On the other hand, by Theorems 7 and 8 a generalized
quasi-Boolean ring without a unit or without a strong zero-divisor is
necessarily non-associative. Now we have the following example of
a generalized quasi-Boolean ring with four elements without unit and
without a strong zero-divisor:

+10aBy X|0aby
0(0apry 00000
ala07r B a | 0ay B
B|B7rOa B0y Ba
rirBal 710Bary

Thus we have an example of “smallest’” non-associative generalized
quasi-Boolean ring. We shall denote this ring with R. Applying
Theorem 10 to this R, we obtain system S of eight elements (already
shown in the preceding paragraph) which forms a non-associative
quasi-Boolean ring. It is easy to see that the quasi-Boolean ring
satisfles the postulates of Newman algebra, therefore we can use
this example for the independence proof of postulate H in Set If
and Set II} respectively.



