15. On Absolute Summability Factors of Infinite Series

By E. C. Daniel
Department of Mathematics, University of Jabalpur, India (Comm. by Kinjirô Kunugi, M.J.A., Feb. 12, 1964)

1. Definitions and Notations. Let s_{n} denote the n-th partial sum of a given infinite series $\sum a_{n}$. We write
where

$$
\begin{aligned}
t_{n} & =\frac{1}{L_{n}} \sum_{\nu=1}^{n} \frac{1}{\nu} s_{\nu}, \\
L_{n} & =\sum_{\nu=1}^{n} \frac{1}{\nu} \operatorname{col} \log n, \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

We say that the series $\sum a_{n}$ is absolutely summable $\left(R, \frac{1}{n}\right)$, or summable $\left|R, \frac{1}{n}\right|$, if the sequence $\left\{t_{n}\right\}$ is of bounded variation, ${ }^{1)}$ that is, the series $\sum\left|t_{n}-t_{n+1}\right|$ is convergent. It may be observed that this method of summability is equivalent to the absolute summability method defined by means of the auxiliary sequence

$$
\frac{1}{\log n} \sum_{\nu=1}^{n} \frac{1}{\nu} s_{\nu}{ }^{2)}
$$

known as the Riesz logarithmic mean of $\left\{s_{n}\right\}$. $^{3)}$
A sequence $\left\{\lambda_{n}\right\}$ is said to be convex ${ }^{4)}$ if
where

$$
\Delta^{2} \lambda_{n}=\Delta^{2}\left(\lambda_{n}\right) \geq 0, \quad n=1,2, \cdots,
$$

and

$$
\Delta^{2}\left(\lambda_{n}\right)=\Delta\left(\Delta \lambda_{n}\right)=\Delta \lambda_{n}-\Delta \lambda_{n+1}
$$

$$
\Delta \lambda_{n}=\Delta\left(\lambda_{n}\right)=\lambda_{n}-\lambda_{n+1} .
$$

Let $\left\{\lambda_{n}\right\}$ be a monotonic increasing sequence such that

$$
\lambda_{n} \rightarrow \infty, \quad \text { as } n \rightarrow \infty
$$

We write

$$
A_{\lambda}(\omega)=A_{\lambda}^{0}(\omega)=\sum_{\lambda_{n} \leq \omega} a_{n}
$$

and, for $r>0$,

$$
A_{\lambda}^{r}(\omega)=\sum_{\lambda_{n} \leq \omega}\left(\omega-\lambda_{n}\right)^{r} a_{n}=r \int_{0}^{\omega}(\omega-\tau)^{r-1} A_{\lambda}(\tau) d \tau
$$

For $r \geq 0$, we write

$$
R_{\lambda}^{r}(\omega)=A_{\lambda}^{r}(\omega) / \omega^{r} .
$$

$\sum a_{n}$ is said to be absolutely summable (R, λ_{n}, r), or summable

1) Symbolically $\left\{t_{n}\right\} \in B V$.
2) This can be easily seen by virtue of Lemma 3 of Iyer's paper [4], which states that the sequence $\left\{\omega_{n}\right\} \equiv\left\{\left(1+\frac{1}{2}+\cdots+\frac{1}{n+1}\right) / \log n\right\}$ is of bounded variation, when we note that ω_{n} is strictly positive for $n \geq 2$.
3) Hardy [3], § 4.16.
4) Zygmund [8], p. 58.
$\left|R, \lambda_{n}, r\right|, r \geq 0$, if $R_{\lambda}^{r}(\omega)$ is a function (of ω) of bounded variation over the infinite interval (k, ∞), where k is some finite positive number. ${ }^{5)}$

It has been pointed out by Prof. Bosanquet that summability $|R, \log n, 1|$ is equivalent to summability $\left.\left|R, \frac{1}{n}\right|{ }^{\circ}{ }^{6}\right)$
Writing

$$
t_{n}=\frac{1}{\Lambda_{n}} \sum_{\nu=1}^{n} \mu_{\nu} s_{\nu}
$$

where $\quad \mu_{n}>0$ for all n, and $\Lambda_{n}=\sum_{\nu=1}^{n} \mu_{\nu} \rightarrow \infty$,
we shall say that the series $\sum a_{n}$ is absolutely summable $\left(R, \mu_{n}\right)$, or summable $\left|R, \mu_{n}\right|$, if $\left\{t_{n}\right\} \in B V$.
2. Introduction. The following result is known.

Theorem A. ${ }^{7)}$ If $\left\{\lambda_{n}\right\}$ is a convex sequence such that the series $\sum n^{-1} \lambda_{n}$ is convergent and the sequence $\left\{s_{n}\right\}$ is bounded, then the series $\sum a_{n} \lambda_{n} \log n$ is summable $\left|R, \frac{1}{n}\right|^{8)}$

It may be remarked that Theorem A was used for proving a certain result on the localization of summability $|R, \log n, 1|$ of a Lebesgue-Fourier series with factors.

The object of the present paper is to demonstrate an extension of Theorem A.
3.1. We establish the following theorem.

Theorem. If $s_{n}=a_{1}+\cdots+a_{n}$, and

$$
\begin{align*}
& \sum_{n=2}^{\infty}\left|s_{n}-a_{1}\right|\left|\lambda_{n}\right|\left|\Delta \varphi_{n}\right|<\infty \tag{3.1.1}\\
& \sum_{n=2}^{\infty}\left|s_{n}-a_{1}\right|\left|\lambda_{n}\right|\left|\varphi_{n}\right| \frac{\mu_{n}}{\Lambda_{n}}<\infty \tag{3.1.2}
\end{align*}
$$

and

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left|s_{n}-a_{1}\right|\left|\varphi_{n+1}\right|\left|\Delta \lambda_{n}\right|<\infty, \tag{3.1.3}
\end{equation*}
$$

then the series $\sum_{n=1}^{\infty} a_{n} \lambda_{n} \varphi_{n}$ is summable $\left|R, \mu_{n}\right|$.

3.2. Proof of the Theorem.

Writing $\quad T_{n}=\sum_{\nu=1}^{n} C_{\nu}$,

$$
C_{n}=a_{n} \lambda_{n} \varphi_{n}
$$

[^0]and
$$
R_{n}=\frac{1}{\Lambda_{n}} \sum_{\nu=1}^{n} \mu_{\nu} T_{\nu}
$$
we have
\[

$$
\begin{aligned}
& R_{n}-R_{n+1}= \frac{1}{\Lambda_{n}} \sum_{\nu=1}^{n} \mu_{\nu} T_{\nu}-\frac{1}{\Lambda_{n+1}} \sum_{\nu=1}^{n+1} \mu_{\nu} T_{\nu} \\
&= \frac{\mu_{n+1}}{\Lambda_{n} \Lambda_{n+1}} \sum_{\nu=1}^{n} \mu_{\nu} T_{\nu}-\frac{\mu_{n+1} T_{n+1}}{\Lambda_{n+1}} \\
&= \frac{\mu_{n+1}}{\Lambda_{n} \Lambda_{n+1}} \sum_{\nu=1}^{n-1} \Lambda_{\nu} \Delta T_{\nu}+\frac{\mu_{n+1}}{\Lambda_{n+1}}\left(T_{n}-T_{n+1}\right) \\
&=-\frac{\mu_{n+1}}{\Lambda_{n} \Lambda_{n+1}} \sum_{\nu=1}^{n-1} \Lambda_{\nu} C_{\nu+1}-\frac{\mu_{n+1}}{\Lambda_{n+1}} C_{n+1} \\
&=-\frac{\mu_{n+1}}{\Lambda_{n} \Lambda_{n+1}} \sum_{\nu=1}^{n} \Lambda_{\nu} C_{\nu+1} \\
&=-\frac{\mu_{n+1}}{\Lambda_{n} \Lambda_{n+1}} \sum_{\nu=1}^{n} a_{\nu+1} \lambda_{\nu+1} \varphi_{\nu+1} \Lambda_{\nu} \\
&=-\frac{\mu_{n+1}}{\Lambda_{n} \Lambda_{n+1}}\left[\sum_{\nu=1}^{n-1}\left(s_{\nu+1}-a_{1}\right) \Delta\left(\lambda_{\nu+1} \varphi_{\nu+1} \Lambda_{\nu}\right)\right. \\
&\left.\quad+\left(s_{n+1}-a_{1}\right) \lambda_{n+1} \varphi_{n+1} \Lambda_{n}\right] \\
&=-\frac{\mu_{n+1}}{\Lambda_{n} \Lambda_{n+1}}\left[\sum _ { \nu = 1 } ^ { n - 1 } (s _ { \nu + 1 } - a _ { 1 }) \left\{\lambda_{\nu+1} \Lambda_{\nu+1} \Delta \varphi_{\nu+1}\right.\right. \\
&\left.-\lambda_{\nu+1} \varphi_{\nu+1} \mu_{\nu+1}+\varphi_{\nu+2} \Lambda_{\nu+1} \Delta \lambda_{\nu+1}\right\} \\
&\left.+\left(s_{n+1}-a_{1}\right) \lambda_{n+1} \varphi_{n+1} \Lambda_{n}\right] .
\end{aligned}
$$
\]

Hence

$$
\begin{aligned}
\sum_{n=2}^{\infty}\left|R_{n}-R_{n+1}\right| & \leq \sum_{n=2}^{\infty}\left|\frac{\mu_{n+1}}{\Lambda_{n} \Lambda_{n+1}} \sum_{\nu=1}^{n-1}\left(s_{\nu+1}-a_{1}\right) \lambda_{\nu+1} \Lambda_{\nu+1} \Delta \varphi_{\nu+1}\right| \\
& +\sum_{n=2}^{\infty}\left|\frac{\mu_{n+1}}{\Lambda_{n} \Lambda_{n+1}} \sum_{\nu=1}^{n-1}\left(s_{\nu+1}-a_{1}\right) \lambda_{\nu+1} \varphi_{\nu+1} \mu_{\nu+1}\right| \\
& +\sum_{n=2}^{\infty}\left|\frac{\mu_{n+1}}{\Lambda_{n} \Lambda_{n+1}} \sum_{\nu=1}^{n-1}\left(s_{\nu+1}-a_{1}\right) \varphi_{\nu+2} \Lambda_{\nu+1} \Delta \lambda_{\nu+1}\right| \\
& +\sum_{n=2}^{\infty}\left|\frac{\mu_{n+1}}{\Lambda_{n+1}}\left(s_{n+1}-a_{1}\right) \lambda_{n+1} \varphi_{n+1}\right| \\
= & \sum_{1}+\sum_{2}+\sum_{3}+\sum_{4}, \quad \text { say. } \\
\sum_{1} \leq & \sum_{n=2}^{\infty} \frac{\mu_{n+1}}{\Lambda_{n} \Lambda_{n+1}} \sum_{\nu=1}^{n-1}\left|\left(s_{\nu+1}-a_{1}\right) \lambda_{\nu+1} \Lambda_{\nu+1} \Delta \varphi_{\nu+1}\right| \\
= & \sum_{n=1}^{\infty} \frac{\mu_{n+2}}{\Lambda_{n+1} \Lambda_{n+2}} \sum_{\nu=1}^{n}\left|\left(s_{\nu+1}-a_{1}\right) \lambda_{\nu+1} \Lambda_{\nu+1} \Delta \varphi_{\nu+1}\right| \\
= & \sum_{\nu=1}^{\infty}\left|\left(s_{\nu+1}-a_{1}\right) \lambda_{\nu+1} \Lambda_{\nu+1} \Delta \varphi_{\nu+1}\right| \sum_{n=\nu}^{\infty} \frac{\mu_{n+2}}{\Lambda_{n+1} \Lambda_{n+2}} \\
= & \sum_{\nu=1}^{\infty}\left|\left(s_{\nu+1}-a_{1}\right) \lambda_{\nu+1} \Lambda_{\nu+1} \Delta \varphi_{\nu+1}\right| \frac{1}{\Lambda_{\nu+1}},
\end{aligned}
$$

(since $\sum_{\nu}^{\infty} \frac{\mu_{n+2}}{\Lambda_{n+1} \Lambda_{n+2}}=\frac{1}{\Lambda_{\nu+1}}$, as $\Lambda_{n} \rightarrow \infty$ with n),

$$
\begin{align*}
& =\sum_{\nu=2}^{\infty}\left|s_{\nu}-a_{1}\left\|\lambda_{\nu}\right\| \Delta \varphi_{\nu}\right| \\
& <\infty \tag{3.2.1}
\end{align*}
$$

by (3.1.1).

$$
\begin{align*}
\sum_{2} & \leq \sum_{n=2}^{\infty} \frac{\mu_{n+1}}{\Lambda_{n} \Lambda_{n+1}} \sum_{\nu=1}^{n-1}\left|\left(s_{\nu+1}-a_{1}\right) \lambda_{\nu+1} \varphi_{\nu+1} \mu_{\nu+1}\right| \\
& =\sum_{n=1}^{\infty} \frac{\mu_{n+2}}{\Lambda_{n+1} \Lambda_{n+2}} \sum_{\nu=1}^{n}\left|\left(s_{\nu+1}-a_{1}\right) \lambda_{\nu+1} \varphi_{\nu+1} \mu_{\nu+1}\right| \\
& =\sum_{\nu=1}^{\infty}\left|\left(s_{\nu+1}-a_{1}\right) \lambda_{\nu+1} \varphi_{\nu+1} \mu_{\nu+1}\right| \sum_{n=\nu}^{\infty} \frac{\mu_{n+2}}{\Lambda_{n+1} \Lambda_{n+2}} \\
& =\sum_{\nu=1}^{\infty}\left|\left(s_{\nu+1}-a_{1}\right) \lambda_{\nu+1} \varphi_{\nu+1} \mu_{\nu+1}\right| \frac{1}{\Lambda_{\nu+1}} \\
& =\sum_{\nu=2}^{\infty}\left|s_{\nu}-a_{1}\right|\left|\lambda_{\nu}\right|\left|\varphi_{\nu}\right| \frac{\mu_{\nu}}{\Lambda_{\nu}} \\
& <\infty, \tag{3.2.2}
\end{align*}
$$

by (3.1.2).

$$
\begin{align*}
\sum_{3} & \leq \sum_{n=2}^{\infty} \frac{\mu_{n+1}}{\Lambda_{n} \Lambda_{n+1}} \sum_{\nu=1}^{n-1}\left|\left(s_{\nu+1}-a_{1}\right) \varphi_{\nu+2} \Lambda_{\nu+1} \Delta \lambda_{\nu+1}\right| \\
& =\sum_{n=1}^{\infty} \frac{\mu_{n+2}}{\Lambda_{n+1} \Lambda_{n+2}} \sum_{\nu=1}^{n}\left|\left(s_{\nu+1}-a_{1}\right) \varphi_{\nu+2} \Lambda_{\nu+1} \Delta \lambda_{\nu+1}\right| \\
& =\sum_{\nu=1}^{\infty}\left|\left(s_{\nu+1}-a_{1}\right) \varphi_{\nu+2} \Lambda_{\nu+1} \Delta \lambda_{\nu+1}\right| \sum_{n=\nu}^{\infty} \frac{\mu_{n+2}}{\Lambda_{n+1} \Lambda_{n+2}} \\
& =\sum_{\nu=1}^{\infty}\left|\left(s_{\nu+1}-a_{1}\right) \varphi_{\nu+2} \Lambda_{\nu+1} \Delta \lambda_{\nu+1}\right| \frac{1}{\Lambda_{\nu+1}} \\
& =\sum_{\nu=2}^{\infty}\left|s_{\nu}-a_{1}\right|\left|\varphi_{\nu+1}\right|\left|\Delta \lambda_{\nu}\right| \\
& <\infty, \tag{3.2.3}
\end{align*}
$$

by (3.1.3).
Lastly,

$$
\begin{equation*}
\sum_{4}=\sum_{n=3}^{\infty}\left|s_{n}-a_{1}\right|\left|\lambda_{n}\right|\left|\varphi_{n}\right| \frac{\mu_{n}}{\Lambda_{n}} \tag{3.2.4}
\end{equation*}
$$

by (3.1.2).
Thus, collecting the inequalities (3.2.1), (3.2.2), (3.2.3), and (3.2.4), we have

$$
\sum_{n=1}^{\infty}\left|R_{n}-R_{n+1}\right|<\infty,
$$

that is, $\sum_{n=1}^{\infty} a_{n} \lambda_{n} \varphi_{n}$ is summable $\left|R, \mu_{n}\right|$.
This completes the proof of our theorem.
We give here a direct corollary of our theorem, which is somewhat more general than Theorem A.

Corollary. If $\left\{\lambda_{n}\right\}$ is monotonic non-increasing, that is, $\Delta \lambda_{n} \geq 0$, and $\sum n^{-1} \lambda_{n}$ is convergent, and $\left\{s_{n}\right\}$ is bounded, then $\sum a_{n} \lambda_{n} \log n$ is
summable $\left|R, \frac{1}{n}\right|$.
To prove this we need the following lemma, suggested by Dr. Pati, which is more general in form than Lemma 3 of Pati [7].

Lemma. If $\left\{\lambda_{n}\right\}$ is monotonic non-increasing, and $\sum n^{-1} \lambda_{n}$ is convergent, then $\sum_{1}^{\infty} \log (n+1) \Delta \lambda_{n}<\infty$.

Proof. First, we show that if $\Delta \lambda_{n} \geq 0$ and $\sum n^{-1} \lambda_{n}<\infty$, then

$$
\lambda_{n} \log n=O(1), \quad \text { as } n \rightarrow \infty .
$$

Now, since λ_{n} is monotonic non-increasing, we have

$$
\lambda_{m} \log m=O\left\{\lambda_{m}\left(\sum_{1}^{m} n^{-1}\right)\right\}=O\left(\sum_{1}^{m} n^{-1} \lambda_{n}\right)=O(1),
$$

as $m \rightarrow \infty$.
Now following Pati, ${ }^{\text {, }}$ we have

$$
\begin{aligned}
\sum_{1}^{m} \log (n+1) \Delta \lambda_{n} & =\lambda_{1} \log 2-\sum_{1}^{m-1} \Delta\{\log (n+1)\} \lambda_{n+1}-\lambda_{m+1} \log (m+1) \\
& =O(1),
\end{aligned}
$$

since

$$
\Delta\{\log (n+1)\}=\log (n+1)-\log (n+2)=O\{1 /(n+1)\},
$$

and

$$
\lambda_{n} \log n=O(1),
$$

as proved above.
The author acknowledges his gratitude to Dr. T. Pati, University of Jabalpur, for his kind interest and advice in the preparation of this paper.

References

[1] S. N. Bhatt: An aspect of local property of $|R, \log n, 1|$ summability of the factored Fourier series. Proc. Nat. Inst. Sci. India, 26(1) A, 69-73 (1959).
[2] L. S. Bosanquet: Mathematical Reviews, 12, 254 (1951).
[3] G. H. Hardy: Divergent Series. Oxford (1949).
[4] A. V. V. Iyer: The equivalence of two methods of absolute summability. Proc. Japan Acad., 39(7) 429-431 (1963).
[5] N. Obrechkoff: Sur la sommation absolue des séries de Dirichlet. Comptes Rendus, Paris, 186, 215-217 (1928).
[6] -: Über die absolute summierung der Dirichletschen Reihen. Math. Zeitschrift, 30, 375-386 (1929).
[7] T. Pati: The summability factors of infinite series. Duke Math. Jour., 21, 271284 (1954).
[8] A. Zygmund: Trigonometrical Series. Warsaw (1935).

[^1]
[^0]: 5) Obrechkoff [5], [6].
 6) Bosanquet [2].
 7) Bhatt [1].
 8) Bhatt states in his enunciation $|R, \log n, 1|$ in place of absolute Riesz logarithmic summability on account of the equivalence of these two methods and the fact that the latter is equivalent to the method $\left|R, \frac{1}{n}\right|$.
[^1]: 9) Pati [7], p. 276, Lemma 3.
