13. Semigroups Whose Any Subsemigroup Contains a Definite Element

By Morio SASAKI^{*)} and Reiko INOUE^{**)} (Comm. by Kenjiro Shoda, M.J.A., Feb. 12, 1964)

A semigroup S is called a β -semigroup if S satisfies the following two conditions:

(1) Any subset of S which contains a definite element e is a subsemigroup of S.

(2) Any subsemigroup of S contains e.

Recently T. Tamura [5] has determined all the types of β -semigroups and one of the authors [3] has done the construction of semigroups which satisfy (1).

In this paper, we shall investigate the semigroups satisfying (2). Such semigroups are called β_2^* -semigroups. A finite unipotent semigroup is a β_2^* -semigroup.

Let S be a β_2^* -semigroup and e be a definite element of S.

Lemma 1. A subsemigroup of a β_2^* -semigroup is a β_2^* -semigroup. Lemma 2. A homomorphic image of a β_2^* -semigroup is a β_2^* -semigroup.

Lemma 3. S is a unipotent inversible [4].

Proof. Since $\langle e^2 \rangle$ is a subsemigroup of S, it follows that $e \in \langle e^2 \rangle$ because of (2), hence $\langle e \rangle$ is a finite cyclic semigroup and contains an idempotent f, and hence e=f since $\langle f \rangle = \{f\} \ni e$. And for any a of S, since $e \in \langle a \rangle$, there exists a positive integer n such that $a^n = e$. Thus, we get this lemma.

Accordingly, by the theory of [4] we have

Lemma 4. S contains a greatest periodic group G (=eS=Se) as a least ideal.

Lemma 5. The difference semigroup (S:G) of S modulo G, in Rees' sense [2], is a nilpotent, where by a nilpotent we mean a semigroup with unique idempotent which is a zero 0 and satisfies that for any element a there exists a positive integer n such that $a^n=0$.

Thus, we have

Theorem 1. A semigroup S is a β_2^* -semigroup if and only if S contains a periodic subgroup G such that (S:G) is a nilpotent.

Proof. We shall prove the sufficiency only. Let T be any subsemigroup of S. Then we get easily $T \cap G \neq \Box$. Hence we can take $x \in T \cap G$ and $\langle x \rangle \subseteq T \cap G$.

^{*)} Iwate University, Morioka.

^{**)} Morioka Girl's High School, Morioka.

And it follows that $\langle x \rangle \ni e$ (the identity of G) since G is a periodic, hence $e \in T$.

We can prove that G is a unique if it exists.

Using [4], we have immediately

Theorem 2. Given a periodic group G and a nilpotent semigroup Z which is disjoint from G and given a ramified homomorphism φ of the set Z* of all non-zero elements of Z into G, we can construct uniquely a β_2^* -semigroup S having G as its greatest group and its least ideal and (S:G) is isomorphic to Z.

The above S is denoted by (G, Z, φ) .

The isomorphism problem on (G, Z, φ) is also solved by the same way in $\lceil 4 \rceil$.

Theorem 3. A β_2^* -semigroup is a β -semigroup if and only if

(i) the order of G is at most 2,

(ii) Z is a zero semigroup

and (iii) $Z^*\varphi = e$ (the identity of G).

References

- A. Clifford and G. Preston: The algebraic theory of semigroups. Amer. Math. Soc., Providence, R. I. (1961).
- [2] D. Rees: On semigroups. Proc. Cambridge Philos. Soc., 36, 387-400 (1940).
- [3] M. Sasaki: Semigroups whose arbitrary subsets containing a definite element are subsemigroups. Proc. Japan Acad., 39, 628-633 (1963).
- [4] T. Tamura: Note on unipotent inversible semigroups. Kôdai Math. Semi. Rep., 3, 93-95 (1954).
- [5] ——: On semigroup whose subsemigroup semilattice is the Boolean algebra of all subsets of a set. Jour. of Gakugei Tokushima Univ., 12, 1-3 (1961).