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§ 5. For the proof of Theorem 1, we shall prove the following
Lemma.

6D Lim=2 [T [oinLay)|+

+% | ¥(1) —¥(1—0) | log n+0 (log 7).

It may be noted that the upper limits of the Stieltjes integrals
in (3.4) and (5.1) are different.

Proof. We shall use the method of L. Lorch and D. J. Newman
[5]. In order to simplify the following calculations, we shall prove

62)  Lia-L¥=2 [ %@i\ [sin Xy +

+% [¥(1)—¥(1—0) | log n+o (log n).

It is easily seen that (5.1) and (5.2) are equivalent for large n.
Replacing the factor {sin 2n+1)u}/sinu by {sin2(n+1)u}/u in
(8.4) induces a bounded error, we obtain, from (2.2),

Li(n— w>—-f | K. 2 o),

where
(5.3) K, ()= f ( 4(1 T)

For fixed ¢ and A with O<s<1<A we put

SR [ [ [ e,

& _ax __‘5*

Vn Vn

== Zsin®u

)15‘ sin 2% gy (7).
r

where §* =d/v2(1—0).

As to I;: In the interval 0<u<%5* we have

yn

> 1 T21—82,
1—{—4(—1;'r—)sin2u
r
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whence
&l [sn 2y [<even)

where V(¥) is the total variation of Y(r) in the interval 0<r<1.
Obviously, for 0<u<Z,

2
(Kl [sin v <2 v

Hence,
_& g%
I
L= [T K@)
0
wa. lf m?-wd*lf(?‘)HEo,
0
where
| Bl < V) f Ty [
T
_( 2e0* | &
-—< 5 4+ 5 logn>V(«lf).
Next,
fw" du }f sm%d«[r(r)‘<<log >V(1lf)
__6*
so that, replacing 2nu by u,
Vo
(5.4) I,= f d“l f s1n—d«lr(¢)l+E1,

where
1 1
| Bl < 1Bl +(log—2 ) V) +2- V()

< { 2e0* 1

e 1
-|-7log n+log T +—5—} V().
As to I, Since |K,(uw)| <V(¥), we have
(55) |1 <(log 2 ) V).

As to I; From (5.3), we have
K, (w)=[¥1)—4¥(1—0)] sin 2nu+

=0 o 2nu
+5f < 4(1 ’")sm u) sin 2% dy(r).
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Further, for —<u< T we have

Vn

1 n 1 n
<1-l-4(1 ") sin? u> ( 4(1‘“7')< >(A5*)2)

4(1—7r) (Ao*) }
r? 7’

Sexp{

for large n.
Hence

1-0 1 2 m
‘a/ < 4(1 ’r)sm u) o i )’

< f exp{— 220 I 4y ) = ga),

say. It may be noted that ¢(A4) is independent of %, and tends to
zero as A—>oco from the Lebesgue principle of dominated convergence.

Hence, we obtain

L=|¥(1)—¥(1—0)] f lsin2nul g+ g,

__,;*

Vn
where

B, |<¢(4) [ iu’ismA) log n
A g

for all large n. Here

z T | 2
f_Z‘ ]Sin 2nul du = fT l sin 2nul '——1-1_— du+
U u
Y A g
v Vn

. 2
[sinv| —=
C= sup fv-————-——”—dv < oo,
v>vz1l v
Thus,
(5.6) Is=_71t_ (1) —¥(1—0) | log n+E,,
where

|E;] < |¥(1)—¥(1—0)|{log A+C}+4(A) log n.
Since
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Lol 2 1 pin+y+0(2),
log n 7 logmn log n
we obtain, from (5.4), (56.5), and (5.6),

sl [ [ vl
+—;|«1»<1>—w<1—0>!—£6—<ﬂ1‘—"’>
1o log n

s%}ww% 6(4).

Here we make e—~0 and A—, and obtain our lemma.
Proof of Theorem 1. Since the proof is quite similar to that
of Theorem 2, we shall sketch it briefly. Let

F(T):fdu’flsin_:f_
0 0

F(T)=TH{|ST#E+0—¥E—0]si

=THW)+o0(T), say.
Hence we obtain, by partial integration,

" du‘fsm—d«!r('r)l f“” F(T)dT

=§J71'l(\lf) log n+o (log n),

then

uk }+0(T)

where J is an appropriate positive constant.
From the previous lemma, this completes the proof of Theorem 1.
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