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71. On Some Singular Integral Equations. I

By Yoshio HAYASHI*)

(Comm. by Kinjir6 KUNUGI, M.Z.A., May 9, 1964)

1. The theory of linear singular line integral equations with
Cauchy-type kernel, on which extensive work has been done, is already
a classical one. Beautiful unified results have been published in
Muskhelishvili’s book 1; however, work is still being done on this
theory and on that of some nonlinear line equations. Muskhelishvili
worked on a linear line singular integral equation of the second kind
first, reducing it to the Hilbert problem, and solved the "dominant"
equation in which the kernel is1 With regard to a general
equation of the second kind, he says only that it is reduced to a
Fredholm integral equation by the application of the solution for the
dominant equation, i.e., of the inverse operator of the dominant
operator, on the general equation of the second kind. Therefore, no
compact formulation is obtained by this method for a solution of a
general equation. The theory of equations of the first kind, in his
method, is included in that of equations of the second kind as a
special case, and no compact formulation for a solution is given.

The author encountered an equation of the first kind while work-
ing on certain Dirichlet and Neumann problems for the wave equation
2J, but he solved it by a revised form of Muskhelishvili’s method.
The reasons why he was not satisfied with Muskhelishvili’s method
are as follows: (1) Consideration of an equation of the second kind
first results in unnecessary complication of the method, and (2) for
the purpose of solving a singular integral equation, it is not necessary
to investigate the Hilbert problem as precisely as Muskhelishivili did
if an equation of the first kind is solved first. In this paper it will
be shown first how to derive a compact formulation for solutions of
a linear, singular line equation of the first kind directly, without
referring to a Fredholm integral equation, and then how to derive
a compact formulation for the solution of an equation of the second
kind by reducing it to an equation of the first kind. A general case
will be treated, in which the path of integration L is a mixture of
closed contours and arcs.

The method will be generalized to the cases of a singular surface
integral equation and of some nonlinear integral equations in the
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following paper.

2. Let L---- _L-- ,L--
be a union of , smooth and non-intersecting closed contours and arcs,
where the contours are specifically denoted by LJ (j--l, 2,..., ,’) and
arcs by Li’ (k--l, 2,...,,"). End points of arcs are denoted by C
(/-1,2,...,2,"), which are numbered so that solutions of singular
integral equations investigated in the following are bounded at C
(l- 1, 2,. ., r) and are unbounded at C (1- r+ 1, r-F 2,. ., 2,"). If the
direction of L is given, a neighborhood U(L’’) of an arc L’ is separated
as U+(L’) and U-(L’) except in the vicinity of Ct, where U+(U-)
lies on the plus (minus) side of L’ with respect to its direction.
Similarly, when L is a closed contour L, then the whole plane is
separated as U (LJ)and U (), where U (U) is the interior (ex-
terior) of L.

In this section, a linear singular line integral equation of the
first kind

lf*{_1_k(t0, t)}r(t)dt=f(t0) (1)
=i t-to

will be investigated, where t and t0 are points on L, while f(t),
r(t)eH(L), where H(L) is a set of functions which satisfy a HSlder
condition on L. The symbol * means that the integral is taken in the
sense of Cauchy’s principal value, k(to, t) is a given function such
that k(t0, t)-k*(to, t)/]t--to] where k*(to, t)eH(L) and 0a<l. The
following definitions are also necessary.

Definition. (i) X(z)--X(z), where z is a point in a plane,

and X(z) is defined as follows:
X(z)- + 1, in U+(L), 1, in U-(L),

where L is a contour L, and

=1 =1

where L are ares Lf. he right hand side of the last expression
is understood to refer to that branch which is holomorhie in the
lane cut along

(ii) he limiting values of X(z) when ztoL are denoted as
X*(to)X(to)-lim X(z), when U*(L),

X-(o)----X(o)--limX(2), when 2U-(L).

(iii) A singular oeraor A is defined by

A(to) X(o) f* ( 1 (t0, t)} (tdtt--to X(t)
where (to, t) is a given function which will be determined later.

(iv) An operator K is defined as
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K(to)=fK(to, t)(t)dt

where K(to, t) is given by

Remark 1. It is not difficult to prove that lim (t--to)K(to, t)--O.
Hence K is not a singular operator.

In terms of these notations, we can prove the following theorems.
Theorem 1. For any g(t)eH(L), we have the identity

(Ag+g())--(I--K)g ( 2 )
where I is the identity operator and g(0) is a solution of

Corollary 1. If (I--K)- exists, then we have the identity rela-
tion

A(I--K)-I=I. 3 )
Theorem 1 is proved with the help of the Poincar-Bertrand theorem

Remark 2. Though both //and K depend on the choice of 2(to, t),
Corollary 1 shows that A(I--K)- is independent of (t0, t).

Theorem 2. Since K is not a singular operator (see Remark 1),
one has

K=K, AK=KA. (4)
However, k and A are not interchangeable in general.

Theorem 3. If (I--K)- exists, then

(I-- K)-1- (I--K)- ( 5
With the help of these results, one obtains the following funda-

mental theorems.

r f <==> (I-- K)r--Af+ re), ( 6
where

kv0)--0.

Theorem . If (6) has a solution, then (I--K)- must exist and
the solution (6) must be given by

v--(I--K)-Af +v(). (8)
Conversely, we can prove that (8) satisfies (6), with the help of

theorems mentioned above.
(8) is the desired formulation for the solution of (6). However,

we must note one more thing.
Since the operator K, or the kernel K(to, t), depends on 2(t0, t),

we may choose 2(t0, t) so that
IlK]I<1. (9)

In other words, 2(t0, t) should be determined subjeet to the restrie-
tion (9). Then (8) is replaced by

Theorem 4.
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-AZ]f.+( (10)
where

f,=gf,_=K,f, fo=f, (11)
and K. is an operator with iterated kernel,

t)----fK,_r(to, )Kr(, t)dK.(to,
Z

K(to, t)=K(to, t), (r=l, 2,...,n--1; n=2,3,...). (12)
(10) is a better formulation for the solution to (6), in the sense that
it is more precise than (8) and is more convenient for practical cal-
culations.

3. In this section, a singular integral equation of the second kind

K:A(to)(to) + B(to)k:(to)=f(to) (
will be investigated, where kr is as was defined in (1), and A, B, f,
ell(L). We assume that A(t)--B(t) # 0 on L.

Suppose that C(t) and D(t) are functions such that C, DeH(L)
and

A(t)e(t)+ B(t)D(t)O, A(t)D(t)+ B(t)C(t)l.
Assume that an operator of the second kind F and its adjoint

operator F’ are defined as follows:

F(to)C(to)(to)+ D(to) f"{--(to, t)}(t)dt,t--to

where r(t0, t) is a given function which will be determined later. hen,
it is not dieul to show that

k*KF (14)
is a singular operator of the first kind.

us define the inner product for x, yH, by (x, y)]x(t)y(t)dt,Let
then the following theorem is known

Theorem 5. The necessary and sufficient conditions for solva-
bility Fy--x are

(x, %)=0, (=, 2,..., n)
where [} is an orthonormal system of independent solutions of
F’=0.

From this theorem, we can prove

Corollar 6. For any function xH(L), the equation
Fy=x*

is solvable, where

x* x- (x,)

Now, we will show how to solve (13) Kr=f.
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Assume that (13) has a solution r, and suppose that is defined
as a solution of

F-r* (15)
where

%)%.
j=l

The existence of the solution of (15)is certified by Corollary 6.

Then, on applying K on the both hand sides of (15) we have, because
of (14),

which turns out, because of (13), to be

f-
Since (16) is an equation of the first kind, it is solvable and its solu-
tion is given by

--(I--K*)-IA*f--(I--K*)-IA*K(r)+) (17)
where k*()--O and A* and K* are operators defined as before corre-

sponding to k*.
Hence, from (15) and (17), we have

r--F(I--K*)-A*f+r() (18)
where

(o___ {I-- F(I--K*)-A *K}(r)+F0).

With the help of Theorem 1, we can prove that

Kr() KF()+ {I-- KF(I--K*)-IA*}K--O.
Hence, (0) in (18) is a solution of

Kr() 0. 19
Conversely, it is easy to show, with the help of Theorems 1 and

3 that r given by (18) satisfies (13). Thus we have obtained
Theorem 7.

Kr--f : r=F(I--K*)-A*f+r(). (20)
Corollary 7. For re ell(L), we have the following identity:

K{F(I--K*)-A*+()}-- (21)
where

K() =0.
4. With regard to a general solution of a homogeneous equation

kr()-0, we have the following theorem:
Theorem 8.

N+
kr()--0 4==> r()(t)--X(t) . pt (22)

where p (n= --N, --N+I,. ., N+,) are constants which satisfy the
following equations:
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, nP-n-- anp (O<:m<=N) (23)

Remark 3. For the sake of brevity and definiteness, Theorem
8 is stated under the assumption that

k(to, t) kn r-- <N.

For more general kernel (t0, t), we hve more complicated rela-
tions instead of

In (2), and 7 are the coecients o the Laurent expansion
of X(z) in the domain r]zl nd Olzl, respectivelX, where

and are constant such that L exists in the domain

is given by a{X(t)t--t. quation 2 is

simultaneous linear equation with regard to 2’1 paraete. Cases will be separated according to
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