70. Some Applications of the Functional-Representations of Normal Operators in Hilbert Spaces. X

By Sakuji Inoue
Faculty of Education, Kumamoto University
(Comm. by Kinjirô Kunugi, m.J.A., May 9, 1964)

In this paper we shall treat of some applications of Theorems 2 and 3 established in the first paper of the same title as above [1].

Definitions and preliminaries. Let M be an arbitrarily prescribed positive constant; let $\left\{\lambda_{\nu}^{(\omega)}\right\}_{\nu=1,2,3, \ldots}$ be any infinite sequence of complex numbers with multiplicities properly counted such that sup $\left|\lambda_{\nu}^{(\omega)}\right| \leqq M$; let c_{ω} be any finite complex number, not zero; let $\left\{\varphi_{\nu}^{(\omega)}\right\}_{\nu=1,2,3, \ldots}^{\nu}$ and $\left\{\psi_{\mu}^{(\omega)}\right\}_{\mu=1,2,3}, \ldots$ both be incomplete orthonormal infinite sets in the complex abstract (complete) Hilbert space $\mathfrak{5}$ which is separable and infinite dimensional; let us suppose that these two orthonormal sets are mutually orthogonal and determine a complete orthonormal system in \mathscr{F}; and let ($\beta_{i j}^{(\omega)}$) be a bounded normal matrix-operator with $\sum_{j=1}^{\infty}\left|\beta_{i j}^{(\omega)}\right|^{2} \neq\left|\beta_{i i}^{(\omega)}\right|^{2}, i=1,2,3, \cdots$, in Hilbert coordinate space l_{2}. Then, as already shown [3], the operator \tilde{N}_{ω} defined by

$$
\widetilde{N}_{\omega}=\sum_{\nu=1}^{\infty} \lambda_{\nu}^{(\omega)} \varphi_{\nu}^{(\omega)} \otimes L_{\varphi_{\nu}}^{(\omega)}+c_{\omega} \sum_{\mu=1}^{\infty} \Psi_{\mu} \otimes L_{\varphi_{\mu}^{(\omega)}} \quad\left(\Psi_{\mu}=\sum_{j=1}^{\infty} \beta_{\mu j}^{(\omega)} \psi_{j}^{(\omega)}\right)
$$

is a bounded normal operator with point spectrum $\left\{\lambda_{\nu}^{(\omega)}\right\}$ in \mathfrak{J} such that its continuous spectrum is not empty, its norm is given by $\max \left(\sup _{\nu}\left|\lambda_{\nu}^{(\omega)}\right|,\left|c_{\omega}\right| \cdot\left\|\left(\beta_{i j}^{(\omega)}\right)\right\|\right)$, and $\varphi_{\nu}^{(\omega)}$ is an eigenelement of \widetilde{N}_{ω} corresponding to the eigenvalue $\lambda_{\nu}^{(\omega)}$; and if such $M, c_{\omega},\left\{\varphi_{\nu}^{(\omega)}\right\}$, $\left\{\psi_{\mu}^{(\omega)}\right\}$, and ($\beta_{i j}^{(\omega)}$) as above are appropriately chosen, conversely any bounded normal operator with point spectrum $\left\{\lambda_{\nu}^{(\omega)}\right\}$ and nonempty continuous spectrum in \mathfrak{N} is expressible by such a series of linear functionals $L_{\varphi_{\nu}^{(\omega)}}, L_{\varphi_{\mu}^{(\omega)}}^{(\omega)}$ as above. On the assumption that M is fixed, we now denote by $\tilde{\Re}(M)$ the class of bounded normal operators \tilde{N}_{ω} for all those $\left\{\lambda_{\nu}^{(\omega)}\right\}, c_{\omega}$, $\left\{\varphi_{\nu}^{(\omega)}\right\},\left\{\psi_{\mu}^{(\omega)}\right\}$, and ($\beta_{i j}^{(\omega)}$) which satisfy the above conditions respectively. Moreover, for any $\widetilde{N} \in \tilde{\Re}(M)$ we denote by $\Delta(\tilde{N})$ the continuous spectrum of \tilde{N}, by $\Delta^{+}(\tilde{N})$ the set of all those accumulation points of the point spectrum $\left\{\lambda_{\nu}\right\}$ of \widetilde{N} which do not belong to $\left\{\lambda_{\nu}\right\}$ itself, by $\Delta^{-}(\tilde{N})$ the set $\Delta(\tilde{N})-\Delta^{+}(\tilde{N})$, and by $\{K(\zeta)\}$ the complex spectral family of \tilde{N}. Then, as already pointed out in one of the preceding papers [2], $\tilde{N}\left[I-K\left(\Delta^{-}(\tilde{N})\right)\right]$ is a bounded normal operator whose point spectrum and continuous spectrum are given by $\left\{\lambda_{\nu}\right\}$ and $\Delta^{+}(\tilde{N})$ respectively.

We shall call any $\tilde{N}\left[I-K\left(\Delta^{-}(\tilde{N})\right)\right]$ "a characterized operator of \tilde{N} " and shall denote by $\Re(M)$ the class of characterized (bounded) normal operators $\tilde{N}\left[I-K\left(\Lambda^{-}(\tilde{N})\right)\right]$ for all $\tilde{N} \in \tilde{\Re}(M)$. Moreover $\mathfrak{R}(M)$ will be called "the characterized normal operator-class for M ". By these definitions, the continuous spectrum of any bounded normal operator $N \in \Re(M)$ consists only of all those accumulation points of its point spectrum which do not belong to (the point spectrum) itself and the inequality $\|N\| \leqq M$ holds. Now let N_{ω} be an arbitrary operator in $\mathfrak{N}(M)$; let

$$
P_{\omega}(\lambda)=\sum_{\alpha=1}^{m_{\omega}}\left(\left(\lambda I-N_{\omega}\right)^{-\alpha} f_{\omega \alpha}, \bar{f}_{\omega \alpha}\right) \quad\left(f_{\omega \alpha}=\sum_{\nu=1}^{\infty} \sqrt{c_{\omega \alpha}^{(\nu)}} \varphi_{\nu}^{(\omega)}, \bar{f}_{\omega \alpha}=\sum_{\nu=1}^{\infty} \sqrt{\overline{c_{\omega \alpha}^{(\nu)}}} \varphi_{\nu}^{(\omega)}\right),
$$

where $1 \leqq m_{\omega}<\infty,\left(\sqrt{c_{\omega \alpha}^{(\nu)}} \varphi_{\nu}^{(\omega)}, \sqrt{\overline{\bar{c}}_{\omega \alpha}^{(\nu)}} \varphi_{\nu}^{(\omega)}\right)=c_{\omega \alpha}^{(\nu)}, \sum_{\nu=1}^{\infty}\left|c_{\omega \alpha}^{(\nu)}\right|<\infty\left(\alpha=1, \cdots, m_{\omega}\right)$, and $\varphi_{\nu}^{(\omega)}$ denotes a normalized eigenelement of N_{ω} corresponding to the eigenvalue $\lambda_{\nu}^{(\omega)}$; let

$$
Q_{\omega}(\lambda)=\sum_{\alpha=1}^{m_{\omega}} \int_{\Delta\left(N_{\omega}\right)}(\lambda-\zeta)^{-\alpha} d\left(K_{\omega}(\zeta) g_{\omega \alpha}, h_{\omega \alpha}\right)
$$

where $\Delta\left(N_{\omega}\right)$ and $\left\{K_{\omega}(\zeta)\right\}$ denote the continuous spectrum and the complex spectral family of N_{ω} respectively and both $g_{\omega \alpha}$ and $h_{\omega \alpha}$ are elements in the subspace orthogonal to the subspace determined by $\left\{\varphi_{\nu}^{(\omega)}\right\}_{\nu=1,2,3}, \ldots$; and let $R_{\omega}(\lambda)$ be an arbitrary integral function. Then the function $S_{\omega}(\lambda)$ defined by $S_{\omega}(\lambda)=R_{\omega}(\lambda)+P_{\omega}(\lambda)+Q_{\omega}(\lambda)$ is a function possessing the same property as that on the singularities of the function $S(\lambda)$ stated in Theorem 1 [1]. Namely $P_{\omega}(\lambda)$ and $Q_{\omega}(\lambda)$ are the first and the second principal parts of $S_{\omega}(\lambda)$ respectively. In addition, as can be easily verified, $P_{\omega}(\lambda)$ and $Q_{\omega}(\lambda)$ are rewritten as follows:

$$
\begin{gathered}
P_{\omega}(\lambda)=\sum_{\alpha=1}^{m_{\omega}} \sum_{\nu=1}^{\infty} \frac{c_{\omega x}^{(\nu)}}{\left(\lambda \cdots \lambda_{\nu}^{(\omega)}\right)^{\alpha}}, \\
Q_{\omega}(\lambda)=\sum_{\alpha=1}^{m_{\omega}}\left(\left(\lambda I-N_{\omega}\right)^{-\alpha} g_{\omega \alpha}, h_{\omega \alpha}\right) .
\end{gathered}
$$

Since, by hypotheses, the orthonormal set $\left\{\varphi_{\nu}^{(\omega)}\right\}$ is incomplete, $Q_{\omega}(\lambda)$ never vanishes and hence the (linear or planar) measure of the continuous spectrum $\Delta\left(N_{\omega}\right)$ consisting only of all those accumulation points of $\left\{\lambda_{\nu}^{(\omega)}\right\}$ which do not belong to $\left\{\lambda_{\nu}^{(\omega)}\right\}$ itself is never zero. If, contrary to it, the measure of $\Delta\left(N_{\omega}\right)$ were zero, then $Q_{\omega}(\lambda)$ would vanish and the orthonormal set $\left\{\varphi_{\nu}^{(\omega)}\right\}$ would become complete. Throughout the present paper we shall denote by $\mathfrak{F}(M)$ the family of functions $S_{\omega}(\lambda)=R_{\omega}(\lambda)+P_{\omega}(\lambda)+Q_{\omega}(\lambda)$ for all integral functions $R_{\omega}(\lambda)$ and all pairs of functions $P_{\omega}(\lambda), Q_{\omega}(\lambda)$ associated with characterized (bounded) normal operators N_{ω} belonging to the class $\Re(M)$ and shall call $\mathfrak{F}(M)$ "the characterized function-family for M ".

Theorem 25. Let $S_{\omega}(\lambda)$ and $S_{\theta}(\lambda)$ be arbitrary functions belonging to the characterized function-family $\mathscr{F}(M)$ for arbitrarily prescribed positive number M; let $P_{\omega}(\lambda)$ and $Q_{\omega}(\lambda)$ be the first and the second
principal parts of $S_{\omega}(\lambda)$ respectively; let $P_{\theta}(\lambda)$ and $Q_{\theta}(\lambda)$ be the first and the second principal parts of $S_{\theta}(\lambda)$ respectively; and let Γ be a rectifiable close Jordan curve, positively oriented, containing wholly the disc $|\lambda| \leqq M$ within itself. Then

$$
\int_{\Gamma} P_{\omega}(\lambda) P_{\theta}^{(k)}(\lambda) d \lambda=\int_{\Gamma} P_{\omega}(\lambda) Q_{\theta}^{(k)}(\lambda) d \lambda=0 \quad(k=0,1,2, \cdots) .
$$

Proof. By hypotheses, there exist suitable characterized (bounded) normal operators $N_{\omega}, N_{\theta} \in \mathfrak{R}(M)$ corresponding to the two pairs of functions $\left(P_{\omega}(\lambda), Q_{\omega}(\lambda)\right)$ and $\left(P_{\theta}(\lambda), Q_{\theta}(\lambda)\right)$ respectively. Moreover it is clear by hypotheses that Γ contains wholly the spectra of N_{ω} and N_{θ} in the interior of itself. As can be verified immediately from the method of the proof of Theorem 2 [1], we have therefore

$$
\frac{1}{2 \pi i} \int_{\Gamma} P_{o}(\lambda)\left(\lambda I-N_{\theta}\right)^{-\alpha} d \lambda=\mathbf{0} \quad(i=\sqrt{-1})
$$

for any positive integer α. On the other hand, $P_{\theta}(\lambda)$ is expressed in the form

$$
P_{\theta}(\lambda)=\sum_{\alpha=1}^{m_{\theta}}\left(\left(\lambda I-N_{\theta}\right)^{-\alpha} f_{\theta \alpha}, \bar{f}_{\theta \alpha}\right) \quad(\lambda \in \Gamma),
$$

where $1 \leqq m_{\theta}<\infty$ and the elements $f_{\theta \alpha}$ and $\bar{f}_{\theta \alpha}$ are appropriately chosen elements in the subspace determined by an orthonormal set of eigenelements of N_{θ} corresponding to all the eigenvalues. By means of these results and the relations

$$
\frac{d^{p}}{d \lambda^{p}}\left(\lambda I-N_{\theta}\right)^{-1}=(-1)^{p} p!\left(\lambda I-N_{\theta}\right)^{-(p+1)} \quad(p=1,2,3, \cdots)
$$

we obtain

$$
\int_{\Gamma} P_{\omega}(\lambda) P_{\theta}^{(k)}(\lambda) d \lambda=0 \quad(k=0,1,2, \cdots) .
$$

Since, moreover, $Q_{\theta}(\lambda)$ is given by

$$
Q_{\theta}(\lambda)=\sum_{\alpha=1}^{m_{\theta}}\left(\left(\lambda I-N_{\theta}\right)^{-\alpha} g_{\theta \alpha}, h_{\theta \alpha}\right)
$$

where both $g_{\theta \alpha}$ and $h_{\theta \alpha}$ are suitable elements in the subspace orthogonal to the subspace determined by an orthonormal set of eigenelements of N_{θ} corresponding to all the eigenvalues, the relations

$$
\int_{\Gamma} P_{\omega}(\lambda) Q_{\theta}^{(k)}(\lambda) d \lambda=0 \quad(k=0,1,2, \cdots)
$$

are established in the same manner as above.
Theorem 26. Let $Q_{\omega}(\lambda), P_{\theta}(\lambda), Q_{\theta}(\lambda)$, and Γ be the same notations as before. Then

$$
\int_{\Gamma} Q_{\omega}(\lambda) P_{\theta}^{(k)}(\lambda) d \lambda=\int_{\Gamma} Q_{\omega}(\lambda) Q_{\theta}^{(k)}(\lambda) d \lambda=0 \quad(k=0,1,2, \cdots) .
$$

Proof. Let $R_{\omega}(\lambda)$ denote the ordinary part of $S_{\omega}(\lambda)$. Then, by the definition concerning the ordinary part, $R_{\omega}(\lambda)$ is regular on the
domain $\{\lambda:|\lambda|<\infty\}$. Hence, denoting by $\left\{K_{\theta}(\zeta)\right\}$ the complex spectral family of N_{θ}, it is found that

$$
\begin{aligned}
\frac{1}{2 \pi i} \int_{\Gamma} R_{\omega}(\lambda)\left(\lambda I-N_{\theta}\right)^{-(k+1)} d \lambda & =\frac{1}{2 \pi i} \int_{\Gamma} R_{\omega}(\lambda) \int_{\mid \leq M}(\lambda-\zeta)^{-(k+1)} d K_{\theta}(\zeta) d \lambda \\
& =\int_{|\zeta| \leq M}\left\{\frac{1}{2 \pi i} \int_{\Gamma}^{|\zeta| \leq M} R_{\omega}(\lambda)(\lambda-\zeta)^{-(k+1)} d \lambda\right\} d K_{\theta}(\zeta) \\
& =\int_{|\zeta| \leq M} \frac{R_{\omega}^{(k)}(\zeta)}{k!} d K_{\theta}(\zeta) \\
& =\frac{R_{\omega}^{(k)}\left(N_{\theta}\right)}{k!} \quad(k=0,1,2, \cdots ; 0!=1)
\end{aligned}
$$

On the other hand, by reference to Theorem 3 [1], we have

$$
\begin{equation*}
\frac{1}{2 \pi i} \int_{\Gamma} S_{\omega}(\lambda)\left(\lambda I-N_{\theta}\right)^{-(k+1)} d \lambda=\frac{R_{\omega}^{(\omega)}\left(N_{\theta}\right)}{k!} \quad(k=0,1,2, \cdots) . \tag{24}
\end{equation*}
$$

By making use of the relation $\int_{\Gamma} P_{\omega}(\lambda)\left(\lambda I-N_{\theta}\right)^{-(k+1)} d \lambda=0$ and the just established results, we have

$$
\frac{1}{2 \pi i} \int_{\Gamma} Q_{\omega}(\lambda)\left(\lambda I-N_{\theta}\right)^{-(k+1)} d \lambda=\mathbf{0} \quad(k=0,1,2, \cdots)
$$

In consequence, the same reasoning as that used to prove Theorem 25 leads us to the required relations in the statement of the present theorem.

Theorem 27. Let $S_{\omega}(\lambda), R_{\omega}(\lambda), P_{\theta}(\lambda), M$, and Γ be the same notations as before, and let the expansion of $P_{\theta}(\lambda)$ be given by

$$
P_{\theta}(\lambda)=\sum_{\alpha=1}^{m_{\theta}} \sum_{\nu=1}^{\infty} \frac{c_{\theta \alpha}^{(\nu)}}{\left(\lambda-\lambda_{\nu}^{(\theta)}\right)^{\alpha}} \quad\left(1 \leqq m_{\theta}<\infty\right),
$$

where $\sum_{\nu=1}^{\infty}\left|c_{\theta \alpha}^{(\nu)}\right|<\infty$ for $\alpha=1, \cdots, m_{\theta}$ and $\sup _{\nu}\left|\lambda_{\nu}^{(\theta)}\right| \leqq M$. Then

$$
\frac{1}{2 \pi i} \int_{\Gamma} S_{\omega}(\lambda) P_{\theta}(\lambda) d \lambda=\sum_{\alpha=1}^{m_{\theta}} \frac{1}{(\alpha-1)!} \sum_{\nu=1}^{\infty} c_{\theta \alpha}^{(\nu)} R_{\omega}^{(\alpha-1)}\left(\lambda_{\nu}^{(\theta)}\right),
$$

where the series on the right-hand side converges absolutely.
Proof. Since, by hypotheses, the set $\left\{\lambda_{\nu}^{(\theta)}\right\}_{\nu=1,2,3, \ldots}$ is the point spectrum of the characterized normal operator $N_{\theta} \in \mathfrak{N}(M)$ corresponding to the pair of $P_{\theta}(\lambda)$ and $Q_{\theta}(\lambda)$,

$$
\begin{equation*}
P_{\theta}(\lambda)=\sum_{\alpha=1}^{m_{\theta}}\left(\left(\lambda I-N_{\theta}\right)^{-\alpha} f_{\theta \alpha}, \bar{f}_{\theta \alpha}\right) \quad\left(N_{\theta} \varphi_{\nu}^{(\theta)}=\lambda_{\nu}^{(\theta)} \varphi_{\nu}^{(\theta)}\right), \tag{25}
\end{equation*}
$$

where $f_{\theta \alpha}=\sum_{\nu=1}^{\infty} \sqrt{c_{\theta \alpha}^{(\nu)}} \varphi_{\nu}^{(\theta)}, \bar{f}_{\theta \alpha}=\sum_{\nu=1}^{\infty} \sqrt{\overline{c_{\theta \alpha}^{(\nu)}}} \varphi_{\nu}^{(\theta)}, \quad\left(\sqrt{c_{\theta \alpha}^{(\nu)}} \varphi_{\nu}^{(\theta)}, \sqrt{\overline{c_{\theta \alpha}^{(\nu)}}} \varphi_{\nu}^{(\theta)}\right)=c_{\theta \alpha}^{(\nu)}$, and $\sum_{\nu=1}^{\infty}\left|c_{\theta \alpha}^{(\nu)}\right|<\infty \quad\left(\alpha=1, \cdots, m_{\theta}\right)$. Since, on the other hand, $R_{\omega}(\lambda)$ is expressible in the form $R_{\omega}(\lambda)=\sum_{n \geqq 0} a_{\omega}^{(n)} \lambda^{n} \quad(|\lambda|<\infty)$,

$$
\begin{aligned}
\left(R_{\omega}^{(\kappa)}\left(N_{\theta}\right) f_{\theta \alpha}, \bar{f}_{\theta \alpha}\right) & =\left(\sum_{n \geqq k} n(n-1) \cdots(n-k+1) a_{\omega}^{(n)} N_{\theta}^{n-k} f_{\theta \alpha}, \bar{f}_{\theta \alpha}\right) \\
& =\sum_{r \geq 0} \frac{(k+r)!}{r!} a_{\omega}^{(\kappa+r)} \sum_{\nu=1}^{\infty} c_{\theta \alpha}^{(\nu)}\left(\lambda_{\nu}^{(\theta)}\right)^{r},
\end{aligned}
$$

for which

$$
\begin{aligned}
\sum_{r \geq 0} \frac{(k+r)!}{r!}\left|a_{\omega}^{(k+r)}\right| \sum_{\nu=1}^{\infty}\left|c_{\theta \alpha}^{(\nu)}\right|\left|\left(\lambda_{\nu}^{(\theta)}\right)^{r}\right| \leqq & \widetilde{R}_{\omega}^{(k)}(M) \sum_{\nu=1}^{\infty}\left|c_{\theta \alpha}^{(\nu)}\right|<\infty \\
& \left(\widetilde{R}_{\omega}(|\lambda|) \equiv \sum_{n \geqq 0}\left|a_{\omega}^{(n)}\right||\lambda|^{n}\right)
\end{aligned}
$$

by virtue of the hypothesis $\sup _{\nu}\left|\lambda_{\nu}^{(\theta)}\right| \leqq M$. Hence it is easily found that

$$
\left(R_{\omega}^{(k)}\left(N_{\theta}\right) f_{\theta_{\alpha}}, \bar{f}_{\theta_{\alpha}}\right)=\sum_{\nu=1}^{\infty} c_{\theta \alpha}^{(\nu)} R_{\omega}^{(k)}\left(\lambda_{\nu}^{(\theta)}\right)
$$

By applying this final result and the relations (24) and (25), we obtain

$$
\begin{aligned}
\frac{1}{2 \pi i} \int_{\Gamma} S_{\omega}(\lambda) P_{\theta}(\lambda) d \lambda & =\frac{1}{2 \pi i} \int_{\Gamma} S_{\omega}(\lambda) \sum_{\alpha=1}^{m_{\theta}}\left(\left(\lambda I-N_{\theta}\right)^{-\alpha} f_{\theta \alpha}, \bar{f}_{\theta \alpha}\right) d \lambda \\
& =\sum_{\alpha=1}^{m_{\theta}} \frac{1}{(\alpha-1)!}\left(R_{\omega}^{(\alpha-1)}\left(N_{\theta}\right) f_{\theta \alpha}, \bar{f}_{\theta \alpha}\right) \\
& =\sum_{\alpha=1}^{m_{\theta}} \frac{1}{(\alpha-1)!} \sum_{\nu=1}^{\infty} c_{\theta \alpha}^{(\nu)} R_{\omega}^{(\alpha-1)}\left(\lambda_{\nu}^{(\theta)}\right) .
\end{aligned}
$$

Thus the present theorem has been proved.
Corollary 4. Let Δ be a Lebesgue μ-measurable set of finite or infinite measure in real m-dimensional Euclidean space; let $L_{2}(\Delta, \mu)$ be the Lebesgue (square integrable) function-space; let $\left\{\lambda_{\nu}\right\}_{\nu=1,2,3}, \ldots$ be an arbitrarily prescribed bounded infinite sequence of complex numbers (counted according to the respective multiplicities); let M be a positive constant with $\sup _{\nu}\left|\lambda_{\nu}\right| \leqq M$; let $\mathfrak{F}(M)$ be the characterized functionfamily for M; let Γ be a rectifiable closed Jordan curve, positively oriented, such that the disc $|\lambda| \leqq M$ lies within Γ itself; let $\left\{\varphi_{\nu}(x)\right\}_{\nu=1,2,3} \ldots$ be a complete orthonormal system in $L_{2}(\Delta, \mu)$; let N be the operator defined by $(N f)(x)=\sum_{\nu=1}^{\infty} \lambda_{\nu} \int_{\Delta} f(y) \overline{\varphi_{\nu}(y)} d \mu(y) \cdot \varphi_{\nu}(x)$ for every $f \in L_{2}(\Delta, \mu)$; and let $f(x, \lambda)$ be the solution of the equation $\lambda f(x)-(N f)$ $(x)=g(x)\left(g \in L_{2}(\lambda, \mu), \lambda \in \Gamma\right)$. Then, for the first and the second principal parts $P_{\omega}(\lambda), Q_{\omega}(\lambda)$ and the ordinary part $R_{\omega}(\lambda)$ of any $S_{\omega}(\lambda) \in \mathscr{F}(M)$ and for almost every $x \in \Delta$,

$$
\int_{\Gamma} P_{\omega}(\lambda) f(x, \lambda) d \lambda=\int_{\Gamma} Q_{\omega}(\lambda) f(x, \lambda) d \lambda=0
$$

and

$$
\frac{1}{2 \pi i} \int_{\Gamma} S_{\omega}(\lambda) f(x, \lambda) d \lambda=\sum_{\nu=1}^{\infty} R_{\omega}\left(\lambda_{\nu}\right) \int_{\Delta} g(y) \overline{\varphi_{\nu}(y)} d \mu(y) \cdot \varphi_{\nu}(x),
$$

where the series on the right is a function in $L_{2}(\Delta, \mu)$.
Proof. By hypotheses, there is no difficulty in showing that N is a bounded normal operator with point spectrum $\left\{\lambda_{\nu}\right\}$ in $L_{2}(\Lambda, \mu)$ and that

$$
f(x, \lambda)=\sum_{\nu=1}^{\infty} \frac{1}{\lambda-\lambda_{\nu}} \int_{\Delta} g(y) \overline{\varphi_{\nu}(y)} d \mu(y) \cdot \varphi_{\nu}(x) \quad(\lambda \in \Gamma)
$$

in the sense of convergence in mean on Δ. If, for the sake of simplicity, $f(x, \lambda)$ is denoted by f_{λ}, then, for every non-null element $h \in L_{2}(\Delta, \mu)$, the function $\left((\lambda I-N)^{-1} g, h\right)=\left(f_{\lambda}, h\right)$ of λ is regarded as the first principal part of a special function whose ordinary part and second principal part both vanish. On the other hand, Theorems 25,26 , and 27 hold also in the special case where $R_{\theta}(\lambda)=Q_{\theta}(\lambda)=0$ or $R_{\theta}(\lambda)=P_{\theta}(\lambda)$ $=0$, as will be seen from the methods of the proofs of those theorems. Accordingly both $\int_{\Gamma} P_{\omega}(\lambda) f_{\lambda} d \lambda$ and $\int_{\Gamma} Q_{\omega}(\lambda) f_{\lambda} d \lambda$ are orthogonal to every $h \in L_{2}(\Delta, \mu)$, and so also is $\frac{1}{2 \pi i} \int_{\Gamma} S_{\omega}(\lambda) f_{2} d \lambda-\sum_{\nu=1}^{\infty} R_{\omega}\left(\lambda_{\nu}\right)\left(g, \varphi_{\nu}\right) \varphi_{\nu}$ by virtue of the relation

$$
\frac{1}{2 \pi i} \int_{\Gamma} S_{\omega}(\lambda)\left(f_{\lambda}, h\right) d \lambda=\sum_{\nu=1}^{\infty} R_{\omega}\left(\lambda_{\nu}\right)\left(g, \varphi_{\nu}\right)\left(\varphi_{\nu}, h\right) .
$$

These results permit us to conclude that the relations in the statement of the present corollary are valid. Moreover, from Parseval's identity and the boundedness of the set $\left\{R_{\omega}\left(\lambda_{\nu}\right)\right\}_{\nu=1,2,3}, \ldots$, it is obvious that $\sum_{\nu=1}^{\infty} R_{\omega}\left(\lambda_{\nu}\right)\left(g, \varphi_{\nu}\right) \varphi_{\nu}$ belongs to $L_{2}(\Lambda, \mu)$, as we wished to prove.

References

[1] S. Inoue: Some applications of the functional-representations of normal operators in Hilbert spaces. Proc. Japan Acad., 38, 263-268 (1962).
[2] -: A note on the functional-representations of normal operators in Hilbert spaces. Proc. Japan Acad., 39, 647-650 (1963).
[3] -: A note on the functional-representations of normal operators in Hilbert spaces. II. Proc. Japan Acad., 39, 743-748 (1963).

