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68. Electromagnetic Field in a Domain Bounded
by Coaxial Circular Cylinders with Slots

By Yoshio HAYASHI*
(Comm. by Kinjirb KUNUG, M.J.A., May 9, 1964)

1. In this paper, the exact solution of the Maxwell equations
is derived by means of dual series equations and a singular integral
equation with Cauchy kernel for a domain exterior to the inner
member of a pair of coaxial circular cylinders where the outer
member has a finite number of axial slots of infinite length and
arbitrary width and in the presence of arbitrary axial line sources.
This is a canonical form of some problems in radio engineering which
became of interest recently. There are many works done on slotted
cylinders [1, [2. However, in these works, distribution of the field
at the slot is usually assumed to be given or is approximated by a
known distribution, say, by that of a static field at a slit on a plane.
Recently, some work has been done [3 on waveguides by the method
of singular integral equations.

In this paper, a compact formulation for the field components
will be given which satisfies all required conditions, i.e., the boundary
condition, the radiation condition, the edge condition at the edges of
the slots and the continuity condition of the field at the slots.

2o Suppose that the expressions
r=a, 0=<<2z, --c<:z<:,

(0<a<b, fl<a<fl+, fl.=fl, j=l, 2,...,,)
represent a pair of coaxial circular cylinders of perfect conductivity,
with , slot specified by

r=b, fl<<a, --<z<.
Without loss of generality, we can assume that there is one axial
line source in the interior (a r< b) at Q r r, , and one axial
line source in the exterior (b<r) at Q:r=r, e, because fields
for more sources are obtainable by the principle of superposition. In
this case, it is easy to see that the Maxwell equations g E=--iwzH,
g H=izE are equivalent to

Au+k2u=O 1
with the boundary conditions

u=0 at r=a and r=b, a<<fl+, (2)
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and
/ --0 at r--a and r=b, sqfls+ (3)
3r

where k-oe/ and Im k=< 0. u is the axial component Ez(H) of E(H)
when the condition is (2)((3)). It is also required that u satisfies
the radiation condition at infinity and the edge condition at edges of
slots.

As a solution of (1) which satisfies the radiation condition, u is
represented as

u=--u- AH(kr)e +fHo(kRe), (b< r)

u-u-- , {BnJn(kr)+CnH(kr)}en+fHo(kR), (a<rb) (4)

where A’s, B’s and C’s are unknown coefficients, and Jn and Hn are
the Bessel function and the Hankel function of the second kind,
respectively. R and R are the distances from Qe and Q, respectively,
and f and fi are given constants which refer to the amplitudes of

sources at Q and Q, respectively. At the slots, u and 3u are re-

quired to be continuous, that is,
3r

u-u and 3U 3u at r=b, flsOas. (5)
3r 3r

This requirement, together with (2), is equivalent to
u--O, (r--a, 0=2u) 6
Ue--Ui, (r--b, 0--__--<2) 7
u--O, (r--b, a<<fl/) 8

3r 3r
Similary, (5), together with (3), is equivalent to

3U--O, (r--a, 0_2) (10)

3Ue_ 3U

3Ue --0,
3r

Ue Ui

(r=b, 0__<=<2) (11)

(r-b, as< (12)

Conversely, if u--Ez and u--Hz are found, which satisfy the edge
condition (which will be taken into account later) and (6)--(9) and
(10)(13), respectively, then the exact solutions E and H of the
original equation are obtained.

3. First, we consider the "Dirichlet problem" (6)--(9). On sub-
stituting (4) into (6) and (7), and making use of the orthogonality
{e} in 0, 2, one obtains simultaneous linear equations for B and
C, from which Bn and C are determined in terms of An, fenfee-ine

(r=b, fls< < as). (13)
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and f----fe-. (For the sake of brevity, the formulas for B and
C are not described here.) On the other hand, (8)and (9) turn out,
by the substitution of (4) and the formulas for B and C obtained
above, to be, {AHn(kb)-feJn(kb)Hn(kre)}ein--O, (<<./ 1), ( 14

1 {A,Hn(ka)--finD(r, a)--fenJ(ka)H(kre)}en--O,
Dn(a, b)

(fl < < a)
(15)

where
D(r, p)=J(kr)H(kp)--J(lcp)Hn(kr)

respectively. (14) and (15) are the dual series equations for unknown
coefficients A for the Dirichlet problems.

Corresponding to these results, those for the Neumann problem
(10)--(13) are derived in the same way. Namely, (10) and (11) are
reduced to simultaneous linear equations, from which the formulas
for B and C are obtained in terms of An. Also, (12)and (13)turn
out to be

-,{AH(kb)-fenJ(kb)H.(kr)}en--O, (afl/), (14)’

ET(a, b)
{AH(ka)--fL(ri, a)-feJ(ka)Hn(kre)}e--O,(fl<<a)

(15)’

respectively, where the primes indicate derivatives of J and H with
respect to their arguments and

T(r, p) r=--J(k )H(kp)--J;(kp)H(kr),
L(r, p)=Jn(kr)H,(kp)-- J(kp)H(kr).

Conversely, if A’s are determined so that they satisfy (14) and
(15) ((14)’ and (15)’), and if B’s and C’s are determined by the formulas
obtained before, then u’s defined by (4) are easily shown to be the
exact solution for (6)(9) ((10)(13)).

4. The left-hand side of (15) can be considered to be a Fourier
expansion of an unknown function 2r in [0, 2] which is identically
zero in (, a). Hence we have

D(a, b) ;v(t?)e_nodt? 1A--
H(ka) J + H(ka{fnDn(r, a)--fJ(ka)H(kre)}. (16)

wall

On substituting (16) into (14), and assuming that the summation
is interchangeable with the integration, one has

fr(O) SeclO=(), 0-------0 (17)

where L is the wall; that is, the union of intervals (, /), and

Sn- H(kb) D(a, b)

vineg()- H(k) [fH(kre)Dn(ab)--fHn(kb)D(ri, a)}. (18)
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In a way similar to this, A for the Neumann problem is repre-
sented from (14)’, as

A- l (f --,r .r’(kb)H(kre)}\ (16)’
H’ (kb)

where slot means a union of intervals (fl., a), and 2r() is an un-
known function defined by the left hand side of (14)’. From (15)’
and (16)’, one derives

fr(0) Sed g() 17 )’

where L is the slot and

S H’(ka)
H(kb) Tn(a, b)

g()---- , e{f Ln(r’ a) Hn(#r )--fen H(kb) J" (18)

Thus we have reduced the dual series equations (14) and (15),
((14)’ and (15)’) to an integral equation (17) ((17)’). Note that (17)
and (17)’ are the same, though L, S and g should be correctly un-
derstood for each case. Conversely, if r is a solution of (17)((17)’),
then A’s defined by (16) ((16)’) are easily proved to satisfy (14) and
(15) ((14)’ and (15)’). Thanks to the same form of (17)and (17)’, we
can solve these integral equations for both cases of u=Ez and u=H
in the same way.

5. By the well-known relations: J_=(--1)Jn and H_n--(--1)H,
one can show that S=S_. Furthermore, one has

I- for (18) (19)S- --ic {1 +sial}, c--
2n [2(kb) for (18)’

where s,, are known, and are small quantities if ONn, where
N is a constant which is determined by ka and kb.

On substituting (19) into (17) ((17)’), one has

r(0) So + - log (2 2 cos O) ic,= Snn cos nO dO g(). 20

Since (20) is not solvable, we differentiate it with respect to 0,
obtaining

yr(0) {i_- 2--sin2cosO }d-/r()k(o O)dO+f(), (21)

where

k(, 0)----- -- +,: --1 +
e
S sin 0

f() i dg().
c de
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Note that the differentiation and integration of (20) are inter-
changeable because the integrand of (20) has only the logarithmic
singularlity.

Suppose that +/---bei and to--be are points on L; then (21) is
shown to be equivalent to a singular integral equation with Cauchy
kernel,

fr(t) {1--k(to, t)}dt-- (23)

where (t), f(t) and itk(to, t) are functions corresponding to (t), f(t)
and k(O, t) respectively.

Remark 1. () is defined by (15’) ((14)’) which is originally
equal to (9)((12)). Hence, is proportional to (H)e--(H), ((E)e).
These quantities are known to have singularities of o(p-/) at the
edges of the slots, where p is the distance from the edges [4.
This is the required edge condition. Hence, we are looking for a
solution of (23)which has a singularity of o(p-) at the end
points of L.

Remark 2. Since (23), or (21), has been derived from (20)by
the differentiation with regard to , a solution of (23) does not
necessarily satisfy (20)). However, since the general solution of (23)
is composed of a particular solution of (23) and a general solution
of a homogeneous equation (i.e., eq. (23) with f(to)-----O), we are able
to pick the solution of (20) up among those of (23), with a pertinent
choice of values for arbitrary constants in a general solution of the
homogeneous equation.

The integral equation (23) is solved by the application of the
theory obtained by the author [5J, as follows:

Def.
End points of L, i.e., those points be and be (j=l, 2,...,
,) are denoted as ct (/=1, 2,..., 2,) in any order.

(ii) X()I (z--e)

1 zfX({){ 1 k(to,{)}{ 1 2(5, t)}d{(iii) K(to, t)-- - X(t) --t----- t--(-
where 2(to, t) is a function such that

(iv) fo(to)-f(to), f(to)----fK(to, t)f_(t)dt.

t--to
In this terminology, the general solution of (23) is given by

v(t)--A,f(to)+V(),
--0
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2V’+v T(Or(=X(t) pt --0, (24)

where p(n=--N,--N+I,...,N+r) are constants which are deter-
mined by the relations

m--N-- +

fl and a are eoeeients o the Laurent expansion of X()at =
and --0, respectively and X(t)t--gt, where

1 ims; m>0
2 c
1

1 ims.; mO.
2 c
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