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1o It was proved by Nagel 3 that there exist infinitely many
imaginary quadratic number fields each with class number divisible
by a given integer. This fact was also proved by Humbert 2 and
Ankeny-Chowla 1 independently.1

Let n be a given integer greater than 1 and S a set of a finite
number of rational primes fixed once for all. In this note we shall
prove, by a method analogous to that used in [1 or [2, the following

THEOREM 1. There exist infinitely many imaginary quadratic
number field F’s each with the following two properties:

i) the class number of F is a multiple of n,
ii) if Sp, then p is ramified in F.
2. Let m be a square-free negative integer and d be the dis-

criminant of the imaginary quadratic number field F=Q(J-). We
denote by k the norm of a primitive2 ambiguous integral ideal of F,
which is different from the principal ideal (/). Thus k is equal to
1 or a positive proper square-free divisor of d different from --m.
We define now the number q as follows. If n is odd, or n is even
and k--l, q is the smallest prime factor of n. If n is even, not a
power of 2, and k4=l, then q is the half of the smallest odd prime
factor of n. Finally if n is a power of 2 and k=l, then q is an
arbitrary real number greater than one. In any case we have n n/q.

THEOREM 2. Case i) Let m-l (mod 4). If m is expressible in
the form
1 m=(kb)2--4 ka,

where a (>1) and b (>0) are integers such that
2 --m>4 kan/q (or equivalently 4 kaY--4 kan/q>(kb)),

then the class numbe.r of F--Q(/) is a multiple of n.
Case ii) Let m==2, 3 (mod 4). If m is expressible in the form

m--(kb).--kan,
where a (>2) and b (>0) are integers such that

--m>kan/q (or equivalently ka--ka/q>(kb))
and a is odd, then the clas number of F--Q(/- )is a multiple of n.

1) The author wishes to express his hearty thanks to Prof. Leopoldt who has kindly
drawn the author’s attention to the papers cited in this note.

2) "Primitive" means here "not divisible by a rational integer".
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PROOF. Case i) If a and b satisfy (1), then kb is odd. So
we put kb--2b’+l. Put w=(l+/)/2. Then (1) is equivalent to

N(b’ q- oo) ka’,
where N denotes the norm from F to Q. Let p be a rational prime
dividing a, then by (1) and the decomposition law of rational primes
in F, we have p-pp’, where p and its conjugate p’ are prime ideals
in F different from each other. Let be a rational prime dividing
k, then we have l=, where is a prime ideal in F. Let
3 (b’ +w)= 1-i I,. 1-I,Y

be the prime ideal decomposition of the principal ideal (b’q-w) in F,
where I and >; are prime ideals dividing k and a, respectively. As
the ideal (b’q-w) is primitive, there does not appear any pair of con-
jugate prime ideals in the above decomposition. We have N(b’/o)--
[II.p’:, where l-Ni and p--Np. Let ka-I-II’l-Ip% then we
have m=nn. Put a=IlPT. If n is odd, then (1-Ii,.a) is principal,
because I]’.a is principal by (3) and the even power of is
principal. So the order of the ideal class represented by 1-II.a is a
factor of n. So it is odd under the assumption that n is odd. Let
c be an odd integer such that 0 < c <_ n/q, and assume that (1-Ii" a)
is principal. As c is odd, it follows that 1-lI.a is principal, so we
have

(4) 1-I a-- (X+Y/-/’
where x and y are integers not equal to zero, because the left-hand
side of (4) is primitive and not ambiguous. Thus we get kaC>--m/4.
This contradicts (2). Thus I]I.a is not principal for c<_n/q. As q
is the smallest prime factor of n, the order of the ideal class re-
presented by I]i.a is n. This completes the proof in case n is odd.
If n is even and k=l, then the proof can be done as above. So let
n be even and k: 1. Then a" belongs to some non-principal ambig-
uous class because of the assumption on k. Thus if n is a power
of 2, the order of the ideal class represented by a is 2n. In the
remaining case, as a is principal and a is not, it suffices to show
that a is not principal for c less than n/q. This can be done by the
same method as above. This completes our proof. The proof of
Case ii) is similar.

3. Let S be a set of a finite number of rational primes and k
the product of all the elements of S. First we assume that S does
not contain 2 so that k is a positive square-free odd integer. Let
p be a prime large enough so that p is not contained in S. We
denote by N(p) the number of square-free integers of the form:
m=(kb)--4kp, where 4kp--4kpn/v>(kb) and kb is odd. For such
an m, by Theorem 2, the class number of F=Q(/) is a multiple
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of n and every rational prime in S is ramified in F.
LEMMA. lira N(p)--

PROOF. The number of such m’s is at least

i(4 k’pn---2- _j--l,
where [x denotes the integral part of x. As / and b are odd,
none of the m’s is divisible by 2. Let lp be an odd prime less
than (4 kp)1/. The number of the m’s divisible by is at most

I.(4 k’pn--4-k-lkPn/q)l/2_j+lo
Finally the number of m’s divisible by p, hence by p, is at most

I,(4
Thus we have

( N
where () denotes the number of rimes not exceeding ,

(-/q)/(. wz
+1_ +.411 6 pl .)> p)l/)

2 8

As >/q, we get our Lemma by the rime number theorem.
Now, if S does not eontain 2, our heorem I follows from heorem

2, Case i) and above Lemma. If S contains 2, then heorem 1 follows
from heorem 2, Case ii) and a slight modification of above Lemma.
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