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1. When a sequence {s} is given we consider the transfor-
mation

where s_--O. If the sequence {y} tends to a finite limit s, {Sn} is
said to be summable (Y) to s. This method of summability was
studied by 0. Szsz [4 in detail. G. H. Hardy also remarked this
method in his book 1. As is easily seen, this method is very
similar to the ordinary convergence. However, it possesses some
interesting properties.

By modifying this method slightly, we obtain the method of
summability (Y*) with the transformation

+ (n-o, ).

Obviously the methods (Y) and (Y*)are equivalent. 0. Szsz 5
proved that the Borel summability (B) does not imply the product
summability (B. Y*).

Recently, W. K. Hayman and A. Wilansky 2 used the method
(Y) to construct some counter example. In this note, we shall study
these methods furthermore.

2. We shall prove the following
Theorem 1. If {s} is Abel summable (A) to s, then it is also

summable (A. Y) to the same sum. Here Y may be replaced by Y*.
Proof. The assertion follows from the equality

(l--x) --o YnXn-- (1-- x) "-"=0 (s,_+ s,)x

(l--x) s_x,+ 8nXn
2

(1--x)(l+x) 8nXn"
n----0

In the case of Y*, the proof is quite similar.
It is interesting to remark that (B) implies) (B. Y) but (B)

does not imply (B. Y*) (see 0. Szsz [5).
As a converse of the above theorem, we shall prove the following

1) Given two summability methods (P), (Q), we say that (P) implies (Q) if any
sequence which is summable (P) is summable (Q) to the same sum.
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Theorem 2. If {Sn} satisfies
lim SnX--O

for all x with 0xl, and if {sn} is summable (A. Y) to s, then it
is summable (A) to the same value. Here Y may be replaced by Y*.

Proof. From the assumption of the theorem, we have, for
0xl,

(s_+s)x lim (Sn_ + 8n)X
=0 =0

lim (1+)+
=0

=(1+) N.
Hence the assertion follows easily. In the ease of Y*, the roof is
quite similar.

3. As a weak summability method we know the harmonie
means (h). his method is defined by means of the tranformation

h=
+1/ +1"

See, e.g., G. H. Hardy [1 . 110. Here we shall study the relation
between he methods (Y) and (h). As is well known, these two
methods are seeial eases of the Nrlund methods of summability.

We suose that
0, p0>0,

and define t by

t-_/P.

If {t} tends to a finite limit , {} is said to be summable (N, ) to .
If po----l, and the remaining p are 0, then we obtain the

method (Y). If -1/(+1) (-0, 1,-..), then we obtain the method
(h). See, e.g., G. H. Hardy [1 . 64.

Here we shall rove the following theorems.
Theorem 3. (h) doe ot impl (Y).
Pfoof. Now, suose -1 (-0, 1,.,.), and the remaining

are 0. Then we have
1
2h0=l, h=, h.=
1
2

1+1
4h= h--

1 1 1
1+-- -t- ---}--We see easily

1

1+--t--3
1 1
2 5

1 1 1 1
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hence

Next we have

Thus

1 1yo- 5, y,=-, y.-o,....

1 limysm+. 0,lim ysm-- lim y

and {Yn} does not converge.
Theorem 4. (Y) does not imply (h).
Proof. We shall use the fundamental theorem on the NSrlund

methods (see G. H. Hardy 1, Theorem 19). Following Hardy’s nota-
tions, let

p(x) l -+- x,
xnq(x)--,

.=0 n+l
Po--1, P=P=... =2,

and

(Ixl<Z),

k,-- 1 1 F..’+(-1)".
n+l n

Since
1 +1 +(_1) 1kn ]--(--1)’k--l--- 3 n+l’

{Ikl} tends to log 2. Now,
col P,+l c P,_/... +lklPo>

>lc01/lcl/... +llcnl--K,, say.
We shall prove here that

KngHQ
does not hold for sufficiently large n, how large H may be taken.

Otherwise, since
1Ik,l >log 2

for n> N, say, and

K>---(n-- N) log 2,
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we would obtain

and

-(n-N) log 2<HQn

nHlogn) for n>N.
But this is impossible, whence the proof is complete according to
the fundamental theorem.

4. We shall prove here the following
Theorem 5. (Y) implies (B).
Proof. From (1) we get

sn-2{y,--y_l+ + (-- 1)ny0},
and

nB(x)- e sn
,=0

xn=2e {y--y_+ +(--1)yo}
,,=o n!

where the last equality may be justified from the boundedness of
{yn}. See, e.g., E. W. Hobson [3, p. 52.

Here we put

?(x)_2e-(_ 1) (--x)

then
B(x)-Yoo(X)+yl(x)+" +y(x)+. ..

We shall prove that if {y} tends to s, then B(x) tends to the same
value for x-->o.

(i) We see immediately
lim(x)-0 (,-0,1,...).

For the same reason as in (2), we obtain, (x)----2e (--1) (- x)
=0 =0 b

.=o n!
2n=2e

,-o (2n)!
ex e-X--2e- +

2

2) We use H to denote a constant, possibly different at each occurrence.
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Hence

lim , 9(x)- 1.
=0

(iii) We see easily
9(a)>0 for a>0 (v=0,1,...).

Hence, for a> 0, , 9(x) ]--, 9(x) 1 + e-.x < 2.
v=0 v=0

Collecting the above estimations, we obtain the desired conclusion
from the fundamental theorem on sequence-to-function transforma-
tions. See, e.g., G. H. Hardy 1, Theorem 5.

Further, we obtain the following
Theorem 6. There is a sequence summable (B) but not summable

(Y).
Proof. To prove (B) does not imply (B. Y*), O. Szsz 5 used

the sequence {Sn] defined by
X fe sn- cos (et) dr.

=0

This sequence has the desired property. Otherwise, it would be sum-
mable (Y*) also. From the regularity of he method (B), it would
be also summable (B. Y*), but it is impossible.

Remark. It is interesting to note that (Y*) implies (B)but (B)
does not imply (B. Y*).
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