103. On Wiener Homeomorphism between Riemann Surfaces

By Mitsuru NAKAI

Mathematical Institute, Nagoya University (Comm. by Kinjirô KUNUGI, M.J.A., Sept. 12, 1964)

1. Definition of Wiener homeomorphism (W.H.). In the theory of ideal boundaries of Riemann surfaces, the family of Wiener functions ([3], pp. 54-65) and that of Dirichlet functions ([3], pp. 65-85) are two main important classes of functions on Riemann surfaces. Let T be a homeomorphism of a Riemann surface R_1 onto another R_2 . It is known ([4], [5]) that T is a general quasiconformal homeomorphism (which we shall abbreviate as Q.H.) of R_1 onto R_2 if and only if T preserves bounded continuous Dirichlet functions. In contrast with this, it is natural and has some interest to introduce a class of homeomorphisms between Riemann surfaces preserving bounded continuous Wiener functions. Let $\mathcal{W}(R)$ be the totality of bounded continuous Wiener functions on a Riemann surface R.

Definition. A homeomorphism T of a Riemann surface R_1 onto another R_2 is called a Wiener homeomorphism (which we abbreviate as W. H.) of R_1 onto R_2 if $f \circ T$ belongs to $\mathcal{W}(R_1)$ when and only when f belongs to $\mathcal{W}(R_2)$.

2. Algebraic and topological criterion of existence of W.H. Let R^* be the Wiener compactification ([3], pp. 96-109) of a Riemann surface R and $C(R^*)$ be the totality of real-valued bounded continuous functions on R^* . By definition, any function in $\mathcal{W}(R)$ can be continuously extended to R^* uniquely and so we may consider that $\mathcal{W}(R) \subset C(R^*)$. Since $\mathcal{W}(R)$ is a vector subspace of $C(R^*)$ which is closed under max and min operations ([3], p. 56) and $\mathcal{W}(R)$ separates points in R^* ([3], p. 98), by Stone's theorem ([3], p. 5), $\mathcal{W}(R)$ is dense in $C(R^*)$ with respect to the uniform convergence topology. Hence $\mathcal{W}(R) = C(R^*)$, since $\mathcal{W}(R)$ is uniformly closed. We call $\mathcal{W}(R)$ Wiener algebra on R in contrast with Royden algebra ([5]).

Theorem 1. Any W. H. T of R_1 onto R_2 induces (and is induced by) an algebraic isomorphism $f \rightarrow f^{\sigma}$ of $\mathcal{W}(R_1)$ onto $\mathcal{W}(R_2)$ satisfying $f^{\sigma} = f \circ T^{-1}$.¹⁾

Proof. We have only to show that any algebraic isomorphism $f \rightarrow f^{\sigma}$ of $\mathcal{W}(R_1)$ onto $\mathcal{W}(R_2)$ is induced by a W.H. T of R_1 onto R_2 with $f^{\sigma} = f \circ T^{-1}$. Since $\mathcal{W}(R_i) = C(R_i^*)$ and R_i^* is compact, any algebraic homomorphism of $\mathcal{W}(R_i)$ onto real numbers is of the form $f \rightarrow f(p)$, where p is a unique fixed point in R_i^* determined by this homomorphism. Let $p \in R_1^*$. Then $f \rightarrow f^{\sigma^{-1}}(p)$ is an algebraic homo-

morphism of $\mathcal{W}(R_2)$ onto real numbers and so there exists a unique point $T^*(p)$ in R_2^* such that $f^{\sigma^{-1}}(p) = f(T^*(p))$. From this, it is easy to see that T^* is a homeomorphism of R_1^* onto R_2^* . Let $p \in R_1$. Then since any point in $R_2^* - R_2$ cannot have a countable fundamental neighborhood system ([3], p. 103), $T^*(p)$ must belong to R_2 . Thus the restriction of T^* on R_1 gives rise to a homeomorphism T of R_1 onto R_2 and $f^{\sigma^{-1}} = f \circ T$ on R_1 or $f^{\sigma} = f \circ T^{-1}$ on R_2 assures that T is a W. H. of R_1 onto R_2 .

Theorem 2. Any W.H. T of R_1 onto R_2 can be extended to a homeomorphism T^* of R_1^* onto R_2^{*1} and conversely, the restriction on R_1 of any homeomorphism T^* of R_1^* onto R_2^* gives rise to a W.H. T of R_1 onto $R_2^{,2^{\circ}}$

Proof. Let T be a W. H. of R_1 onto R_2 . Then $f \to f \circ T^{-1}$ induces an algebraic isomorphism of $\mathcal{W}(R_1)$ onto $\mathcal{W}(R_2)$ and as in the proof of Theorem 1, this isomorphism induces a homeomorphism T^* of R_1^* onto R_2^* such that $f \circ T^{-1} = f \circ T^{*^{-1}}$ for any f in $\mathcal{W}(R_2) = C(R_2^*)$. Thus the restriction of T^* on R_1 is T. Conversely, assume that T^* is a homeomorphism of R_1^* onto R_2^* . Then $f \to f \circ T^{*^{-1}}$ induces an algebraic isomorphism of $C(R_1^*) = \mathcal{W}(R_1)$ onto $C(R_2^*) = \mathcal{W}(R_2)$ and so by Theorem 1, there exists a W. H. T of R_1 onto R_2 such that $f \circ T^{*^{-1}} = f \circ T^{-1}$ for any f in $C(R_2^*) = \mathcal{W}(R_2)$. Thus the restriction of T^* on R_1 is a W. H. T of R_1 onto R_2 .

3. Absolute continuity of W.H. on Wiener boundary. We denote by Δ the Wiener boundary $R^* - R$ and by Γ (Wiener) harmonic boundary of R^* ([3], p. 90). The set Δ (resp. Γ) is a compact subset of R^* (resp. Δ). If we denote by $\mathcal{W}_0(R)$ the totality of bounded continuous Wiener potentials ([3], p. 56), then $\Gamma = (p \in R^*; f(p) = 0$ for any f in $\mathcal{W}_0(R)$) and $\mathcal{W}_0(R) = (f \in \mathcal{W}(R); f = 0$ on Γ).

Theorem 3. Any W.H. T of a Riemann surface R_1 onto R_2 can be extended to a homeomorphism T^* of R_1^* onto R_2^* and $T^*(\Gamma_1) = \Gamma_2^{(1)}$.

Proof. Let $p_1 \in \Gamma_1$. Clearly $p_2 = T^*(p_1) \in A_2$. We have to show that $p_2 \in \Gamma_2$. Contrary to the assertion, assume that $p_2 \in A_2 - \Gamma_2$. Since Γ_2 is compact, we can find two open neighborhoods F_2^* and G_2^* of p_2 such that $F_2^* \supset \overline{G_2^*}$ and $\overline{F_2^*} \frown \Gamma_2 = \phi$. Moreover we may assume that relative boundaries of $F_2 = F_2^* \frown R_2$ and $G_2 = G_2^* \frown R_2$ consist of at most countably many piecewise analytic Jordan curves not ending and not accumulating in R_2 . We set $F_1^* = T^{*-1}(F_2^*)$, $G_1^* = T^{*-1}(G_2^*)$, $F_1 = T^{-1}(F_2) = F_1^* \frown R_1$ and $G_1 = T^{-1}(G_2) = G_1^* \frown R_1$. Since $\Gamma_1 \frown \overline{R_1 - G_1} \Rightarrow p_1$, $\Gamma_1 \oplus \overline{R_1 - G_1}$ and so there exists a connected component of G_1 , say G_1' , not of type SO_{HB} ([3], Satz 9.12, p. 108).

¹⁾ The same is true for Q. H. and Royden's compactification and algebra ([5], [4]).

²⁾ This is not true for Q.H. and Royden's compactification.

Let $G'_2 = T(G'_1)$. We can find a normal exhaustion $(R_n^{(2)})_{n=1}^{\infty}$ of R_2 such that $\partial R_n^{(2)} \frown G'_2 \neq \phi$. Then $(R_n^{(1)})_{n=1}^{\infty}$ is an exhaustion of R, where $R_n^{(1)} =$ $T^{-1}(R_n^{\scriptscriptstyle(2)}).$ We can find a real-valued continuous function f_2 on R_2 such that $0 \le f_2 \le 1$ on R_2 and $f_2 = 0$ on $\bigcup_{n=1}^{\infty} (\partial R_{2n}^{(2)} \frown \overline{F_2^*} \frown R_2) \cup (R_2 - F_2)$ and $f_2=1$ on $\bigcup_{n=1}^{\infty} (\partial R_{2n-1}^{(2)} \frown \overline{G_2^*} \frown R_2)$. Let $f_1=f_2 \circ T$. Then f_1 is continuous function on R_1 such that $0 \le f_1 \le 1$ on R_1 and $f_1 = 0$ on $\bigcup_{n=1}^{\infty} \partial R_{2n}^{(1)}$ and $f_1=1$ on $\bigcup_{n=1}^{\infty} (\partial R_{2n-1}^{(1)} \cap G'_1)$. As $G'_1 \notin SO_{HB}$, so there exists a continuous function h on R_1 such that $0 \le h \le 1$ on R_1 and h=0 on R_1-G_1 and $h \in HB(G'_1) \text{ and } h > 0 \text{ on } G'_1.$ Clearly $H_{f_1}^{R_{2m}^{(1)}} = 0 \text{ and } H_{f_1}^{R_{2m-1}^{(1)}} > h > 0.$ Thus $\lim_{n\to\infty}H_{f_1}^{R_n^{(1)}} \text{ does not exist on } R_1. \quad \text{Hence } f_1 \notin \mathcal{W}(R_1) \ ([3], \text{Satz 6.2, p. 57}).$ Let $K = \overline{F_2^*} \frown I_2$. Then there exists a positive finite superharmonic function S on R_2 such that $\lim_{R \ni z \to p} S(z) = \infty$ for any p in K. Let $(R'_n)_{n=1}^\infty$ be an arbitrary exhaustion of R_2 and $\varepsilon \! > \! 0$. Then $0 \! \leq \! H_{f_2}^{R'_n} \! < \! \varepsilon \! S$ for sufficiently large n. Thus $\limsup_{n\to\infty} H_{f_2}^{R_n^{(2)}}(z) \leq \varepsilon S(z)$ for any point z in R_2 , or $\lim_{n\to\infty} H_{f_2}^{R_n} \equiv 0$ on R_2 . This shows that $f_2 \in \mathcal{W}(R_2)$ ([3], Satz 6.3, p. 62). Thus we have $f_1=f_2\circ T$ and $f_1\notin \mathcal{W}(R_1)$ and $f_2\in \mathcal{W}(R_2)$. This contradicts the fact that T is a W.H.

Corollary 3.1. Let T be a W.H. of a hyperbolic Riemann surface R_1 onto another R_2 and G be a subdomain of R_1 . Then $G \in SO_{HB}$ if and only if $TG \in SO_{HB}$.

Proof. $G \in SO_{HB}$ if and only if $\Gamma_1 \subset \overline{R_1 - G}$ ([3], p. 108). This with Theorem 3 proves our assertion.

Theorem 4. Let T be a W.H. of a Reimann surface R_1 onto R_2 and T^* be its homeomorphic extension of R_1^* onto R_2^* . The set X in Δ_1 is of harmonic measure zero ([3], p. 87) if and only if $T^*(X)$ is of harmonic measure zero in Δ_2 .⁸¹

Proof. Let ω_i be the harmonic measure on Δ_i . Since $\omega_i(\Delta_i - \Gamma_i) = 0$, we have only to prove that if the set X in Γ_1 is of harmonic measure zero, then $T^*(X)$ is of harmonic measure zero. As Γ_1 is a Stonean space ([3], p. 101), we can find a sequence $(K_n)_{n=1}^{\infty}$ of open and compact subsets K_n in Γ_1 such that $K_1 \supseteq K_2 \supseteq \cdots \supseteq K_n \supseteq X$ and $\omega_1(K_n) \searrow 0$ $(n \to \infty)$. By Theorem 3, $T^*(X) \supseteq \Gamma_2$. Contrary to the assertion, assume that $\omega_2(T^*X) > 0$. Let f_n be the characteristic function of T^*K_n . Then f_n is continuous on Γ_2 and $H_{f_n}^{R_2}(z) \ge H_{f_n+p}^{R_2}(z) = \int f_{n+p} d\omega_{2,z} = \omega_{2,z}(T^*K_{n+p}) \ge$ $\omega_{2,z}(T^*X) \geqq 0$. Hence $u(z) = \lim_n H_{f_n}^{R_2}(z)$ is a strictly positive HBfunction on R_2 with $u \le H_{f_n}^{R_2}$ on R_2 . Thus $U = (p \in \Gamma_2; u(p) > 0)$ is a non-void open set in Γ_2 . As $f_n(q) = H_{f_n}^{R_2}(q) \ge u(q)$ on Γ_2 ([3], p. 101), so $U \subseteq T^*K_n$. By the fact that Γ_2 is a Stonean space, $\overline{U}(\subseteq T^*K_n)$ is

³⁾ This is not true for Q. H. and Royden's compactification (see [6], p. 175).

open and closed and so is $K = T^{*^{-1}}(\overline{U})$ in Γ_1 and $K_n \supset K$ $(n=1,2,\cdots)$. Let f be the characteristic function of K on Γ_1 . Then f is continuous ous on Γ_1 and so $H_f^{R_1}$ is a non-negative HB-function on R_1 and so continuous on R_1^* and $H_f^{R_1}(p) = f(p)$ on Γ_1 . Since f(p) > 0 and $f(p) \equiv 0$ on Γ_1 , $H_f^{R_1}$ is strictly positive on R_1 . Thus for any point z in R_1 , $0 < H_f^R(z) = \int f d\omega_{1,z} = \omega_{1,z}(K)$, i.e. $\omega_1(K) > 0$. Hence $\omega_1(K_n) \ge \omega_1(K) > 0$ $(n=1,2,\cdots)$. This contradicts the fact that $\omega_1(K_n) \searrow 0$ $(n \to \infty)$.

4. Invariance of some classes of open Riemann surfaces by W. H.

Theorem 5. O_G , O_{HB} , O_{HB}^n $(1 \le n \le \infty)$ and U_{HB} are invariant by W. H.⁴⁾

Proof. Let R be an open Riemann surface. $R \in O_G$ if and only if $\Gamma = \phi$, $R \in O_{HB}$ if and only if Γ consists of only one point, $R \in O_{HB}^n - O_{HB}^{n-1}(2 \le n < \infty)$ if and only if Γ consists of n points, $R \in O_{HB} - \bigcup_{n=1}^{\infty} O_{HB}^n$ if and only if $\Gamma = (p_1, p_2, \cdots) \cup X$ with $\omega(p_i) > 0$ $(n=1, 2, \cdots)$ and $\omega(X) = 0$, $R \in U_{HB}$ if and only if Γ contains a point p with $\omega(p) > 0$ ([3], pp. 125-127). From this with Theorems 3 and 4, we get our assertion.

5. W.H. of open unit disc. Let $U=(z; |z|<1), C=\partial U$ and $\widetilde{U}=U \cup C$.

Theorem 6. Let T be a W.H. of U onto U. Then T can be continuously extended so as to be a homeomorphism \tilde{T} of \tilde{U} onto \tilde{U} .⁵

Proof. By applying a suitable linear transformation, we may assume that T(0)=0. Let $\zeta \in C$ and $C_U(T,\zeta)$ be the cluster set of T at ζ in U. First we show that $C_{U}(T, \zeta)$ consists of only one point in C. If this is not the case, then $C_{U}(T, \zeta)$ is a non-degenerated closed subarc A of C. Let $V_n = (z \in \widetilde{U}; |z-\zeta| \le 1/n)$ $(n=1, 2, \cdots)$ and f_n be a continuous function on U such that $f_n=1$ on V_n and f_n is harmonic in $U-V_n$ with boundary values 0 at $C-V_n$ and 1 at ∂V_n . Then f_n is a superharmonic in U and so $f_n \in \mathcal{W}(U)$ and also $g_n = f_n \circ T^{-1} \in \mathcal{W}(U)$. We decompose f_n and g_n into the forms $f_n = u_n + \varphi_n$ and $g_n = v_n + \phi_n$, where u_n , $v_n \in HB(U)$ and φ_n , $\phi_n \in \mathcal{W}_0(U)$. Let T^* be the continuous extension of T of the Wiener compactification U^* of U onto U^* . Then $g_n \circ T^* = g_n \circ T = f_n$ on U and so $g_n \circ T^* = f_n$ on U*. Since T* preserves the harmonic boundary Γ of U and $\varphi_n = \phi_n = 0$ on Γ , we get that $u_n = v_n \circ T^*$ on Γ . Clearly, u_n is the harmonic measure of $V_n \frown C$ in U and so $u_n \wedge (1-u_n)=0$ in U. Hence min $(u_n(p), 1-u_n(p))=0$ on Γ ([3], p. 56). Thus u_n takes only two values 0 and 1 on Γ and the same is true for v_n , since $u_n = v_n \circ T^*$ on Γ and $T^*(\Gamma) = \Gamma$. Let $\mathbf{K}_n = (p \in \Gamma; u_n(p) = 1)$. Then $T^*(K_n) = (p \in \Gamma; v_n(p) = 1)$. Let ω be the

⁴⁾ Compare this with the result of Pfluger [7] and Royden [8] concerning Q.H.

⁵⁾ This is true for Q. H. (see [1]).

harmonic measure on Γ with respect to 0. Then $\omega(K_n) = \int u_n(p)d\omega(p) =$ $u_n(0)$ and similarly, $\omega(T^*(K_n)) = v_n(0)$. Clearly, $u_n(0) \searrow 0$ on U and so $K_1 \supseteq K_2 \supseteq K_3 \cdots$ and so $T^*(K_1) \supseteq T^*(K_2) \supseteq T^*(K_3) \supseteq \cdots$ and $\omega(K_n) \searrow 0$. Thus $\omega(\bigcup_{n=1}^{\infty}K_n) = \lim_{n \to \infty} \omega(K_n) = 0$ and by Theorem 4, $0 = \omega(T^*(\bigcup_{n=1}^{\infty}K_n)) = 0$ $\omega(\bigcup_{n=1}^{\infty}T^*(K_n)) = \lim_{n \to \infty} \omega(T^*(K_n)) = \lim_{n \to \infty} v_n(0)$. Thus $v_n(0) \searrow 0$. But this is a contradiction. In fact, there exists a bounded Green potential S in U such that $|\phi_n| \leq S$ in U ([3], Hilfssatz 6.4, p. 56). Then by Littlewood's theorem (see for example, [9], Theorem IV. 33 in p. 170 and Theorem IV. 34 in p. 172), $\lim_{r \neq 1} S(re^{i\theta}) = 0$ and so $\lim_{r \neq 1} \phi_n(re^{i\theta}) = 0$ for almost every $e^{i\theta}$ in C. As $v_n(e^{i\theta}) = \lim_{r \nearrow 1} v_n(re^{i\theta})$ exists for almost every $e^{i\theta}$ in C and so $\lim_{r \neq 1} g_n(re^{i\theta})$ exists and equals $v_n(e^{i\theta})$ for almost every $e^{i\theta}$ in C. Let $\gamma_w = (re^{i \arg w}; 0 \le r < 1)$ and $\gamma'_w = T^{-1}(\gamma_w)$. We see that the closure $\tilde{\gamma}'_w$ of γ'_w in \tilde{U} contains ζ for each w in the interior of the arc $A = C_{\mu}(T, \zeta)$ except at most one w in it. To see this, assume that there exist two distinct points w_1 and w_2 in the interior of the arc A such that $\zeta \notin \tilde{\gamma}'_{w_1} \smile \tilde{\gamma}'_{w_2}$. As $\gamma_{w_1} \smile \gamma_{w_2}$ divides U into two components U_1 and U_2 , so $\gamma'_{w_1} \smile \gamma'_{w_2}$ divides U into two components U'_1 and U'_2 . We assume that $T(U'_i) = U_i$ (i=1,2). Since $\gamma'_{w_1} \sim \gamma'_{w_2} = \partial U'_i$ (i=1,2) is free from ζ , one of the closures \widetilde{U}'_i of U'_i in U (i=1,2), say \widetilde{U}'_1 , is a neighborhood of ζ in \widetilde{U} . Then $A = C_U(T, \zeta) \subset \widetilde{T(U_1')} = U_1$ by the definition of the cluster set and so $A \frown (C - \widetilde{U}_1) = \phi$, which is clearly a contradiction, since w_1 and w_2 are contained in the interior of A and so $A \frown (C - \tilde{U}_1) \neq \phi$. Thus $\zeta \in \tilde{\gamma}'_w$ for each w in A except at most three points in A. Let A_n be the set of w in A such that g_n has the limit along γ_w and $\zeta \in \tilde{\gamma}'_w$. Then $A - A_n$ is of linear measure zero. For each $w \in A_n$, we can find a sequence $z_m \in \gamma'_w$ such that $z_m \to \zeta$ in \widetilde{U} . Then $T(z_m) = r_m e^{i \arg w} \rightarrow w$. Thus $v_n(e^{i \arg w}) = \lim_{r \neq 1} g_n(r e^{i \arg w}) = \lim_m g_n(r_m e^{i \arg w}) =$ $\lim_{m} g_n(T(z_m)) = \lim_{m} f_n(z_m) = 1$. Hence $v_n(e^{i\theta}) = 1$ for all $e^{i\theta}$ in A_n and so for almost every $e^{i\theta}$ in A. Since $v_n(z) \ge 0$ on U, $v_n(0) =$ $(1/2\pi)\int_{0}^{2\pi} v_n(e^{i heta})d heta \ge (1/2\pi)\int_{A_n} d heta = (1/2\pi)\int_{A} d heta.$ Hence $0 = \lim_n v_n(0) \ge$ $(1/2\pi)\int d\theta > 0$, a contradiction.

Thus $C_U(T, \zeta)$ consists of one point in C, say $\widetilde{T}\zeta$, for any ζ in C. Thus by setting $\widetilde{T}(z) = T(z)$ for z in U, \widetilde{T} is a continuous mapping of \widetilde{U} onto \widetilde{U} . Assume that there exist two distinct points b_1 and b_2 in C such that $\widetilde{T}(b_1) = \widetilde{T}(b_2)$. We take an analytic Jordan arc L in U connecting b_1 and b_2 . Then $\overline{T(L)}$ is a closed Jordan curve in U with $\overline{T(U)} \frown C = T(b_1) = T(b_2)$. The interior G_2 of $\overline{T(L)}$ is a subdomain of U and $G_1 = T^{-1}(G_2)$ is also a subdomain of U with $\partial G_1 = L$. Clearly $G_1 \notin SO_{HB}$ No. 7]

and $G_2 \in SO_{HB}$. This contradicts Corollary 3.1.

Theorem 7. Let T be a W.H. of U onto U and \tilde{T} be its homeomorphic extension of \tilde{U} onto \tilde{U} . Then \tilde{T} is an absolutely continuous homeomorphism of C onto $C.^{6}$

Proof. The identity map of U onto U can be extended to a continuous mapping ρ of U^* onto \widetilde{U} uniquely ([3], p. 99). Notice that $(2\pi)^{-1}d\theta$ is the harmonic measure on C with the reference point 0. Hence for any bounded continuous function f on C, we get $\int_{A} f \circ \rho \, d\omega^{\tau_0} = (2\pi)^{-1} \int_{C} f \, d\theta$ ([3], Satz 8.6, p. 92). From this, for any compact set K, it follows easily that $\omega(K) = (2\pi)^{-1} \int d\theta$.

It is easy to see that $\rho \circ T^* = \widetilde{T} \circ \rho$ in U^* and similarly $\rho \circ (T^{-1})^* = (\widetilde{T^{-1}}) \circ \rho$ in U^* . Let F be a compact set in C with $\int_F d\theta = 0$. We have to show that $\int_{\widetilde{T}(F)} d\theta = 0$. By the above, $\omega(\rho^{-1}(F)) = (2\pi)^{-1} \int_F d\theta = 0$ and so $\omega(T^*(\rho^{-1}(F))) = 0$ by Theorem 4. On the other hand, $\widetilde{T}(F) = \widetilde{T}(\rho(\rho^{-1}(F))) = (\widetilde{T} \circ \rho)(\rho^{-1}(F)) = (\rho \circ T^*)(\rho^{-1}(F))$, i.e. $\rho \circ (T^*(\rho^{-1}(F))) = \widetilde{T}(F)$. Hence $T^*(\rho^{-1}(F)) \subset \rho^{-1}(\widetilde{T}(F))$. Let $q \in \rho^{-1}(\widetilde{T}(F))$ and $p = (T^{-1})^*(q) = (T^*)^{-1}(q)$. Then $\rho(p) = (\rho \circ (T^{-1})^*)(q) = ((\widetilde{T^{-1}}) \circ \rho)(q) = (\widetilde{T})^{-1}(\rho(q))$. As $\rho(q) \in \widetilde{T}(F)$, so $(\widetilde{T})^{-1}(\rho(q)) \in (\widetilde{T})^{-1}(\widetilde{T}(F)) = F$. Thus $p \in \rho^{-1}(F)$ and so $q = T^*((T^*)^{-1}(q)) = T^*(p) \in T^*(\rho^{-1}(F))$. Thus we conclude that $T^*(\rho^{-1}(F)) = \rho^{-1}(\widetilde{T}(F))$. Hence $\int_{\widetilde{T}(F)} d\theta = (2\pi)\omega(\rho^{-1}(\widetilde{T}(F)) = (2\pi)\omega(T^*(\rho^{-1}(F))) = 0$.

References

- L. V. Ahlfors: On quasiconformal mappings. J. d'Analyse Math., 3, 1-58, 207-208 (1953/4).
- [2] A. Beurling and L. V. Ahlfors: The boundary correspondence under quasiconformal mappings. Acta Math., 96, 125-142 (1956).
- [3] C. Constantinescu and A. Cornea: Ideale Ränder Riemannscher Flächen. Springer-Verlag, Berlin-Göttingen-Heidelberg (1963).
- [4] M. Nakai: On a ring isomorphism induced by quasiconformal mappings. Nagoya Math., J., 14, 201-221 (1959).
- [5] ——: Algebraic criterion on quasiconformal equivalence of Riemann surfaces. Nagoya Math. J., 16, 157–184 (1960).
- [6] ——: Genus and classification of Riemann surfaces. Osaka Math. J., 14, 153-180 (1962).
- [7] A. Pfluger: Sur un propriété de l'application quasi conforme d'une surface de Riemann ouverte. C. R. Acad. Sci. Paris, 227, 25-26 (1948).
- [8] H. L. Royden: A property of quasi-conformal mapping. Proc. Amer. Math. Soc., 5, 266-269 (1954).
- [9] M. Tsuji: Potential Theory in Modern Function Theory. Maruzen, Tokyo (1959).

7) We assume that the reference point of ω is 0.

⁶⁾ This is not true for Q. H. by virtue of the important example of Beurling-Ahlfors [2].