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(Comm. by Kinjir6 KuquGI, ..A., Dec. 12, 1964)

1. Introduction. In order to avoid the divergence in pertur-
bation for Miyatake Van-Hove model with fixed point source 4-6]
various methods are deviced. The most usual and important method
of them is the cut-off operation whose true meaning is to use a
source with non zero volume (in some meaning). But in cut-off process
the causality condition is not satisfied. In quantum field theory, the
cut-off operation is used without any hesitation.

Now, let’s rewrite this operation to the mathematical form. The
periodic function f(z) with period 2r (by considering the physical
effect to enclose in a box)can be developed to the series f(z)-
=_Ce. Well known Riemann-Lebesgue’s theorem is the following

Theorem. If f() is contained in L, hen lim C--0.
Our requirement is the very troublesome one. Namely, it is

desired that the above theorem (by the order o(1/n)) is satisfied for
f(z) whose definition’s domain is the set of isolated points. The
function f(z) used in Miyatake Van-Hove model was (z) defined in
the interval 0, 2z. Afterward, O. Miyatake has used the function
f(x)--__ C() defined in the interval _0, 2z_ and has investigated
whether this requirement is satisfied or not for this f(z). But the
above requirement is not satisfied for these models. Here, as f(z),
we will use the finite linear combination of the characteristic functions
of nowhere dense perfect set with positive measure appearing in the
process tending to function or -like function (instead of the sum
of function defined in the set of isolated points), and we will
investigate whether the above requirement is satisfied or not. Because,
"nowhere dense" corresponds to "isolated" by some meaning, and
"perfect" corresponds to "related." The cut-off related to only
Riemann-Lebesgue’s theorem is called "natural cut-off." For the
requirement to the order tending to zero (o(1/n)) it seems that "exact
cut-off" must be used. For the exact cut-off (by using A-integral)
even a sort of countable infinite linear combination of the above
characteristic functions is used. The foundation of our consideration
is the A-integral representation of distributions (or E.R. integral)
by Bnorpaoa BOHI4 etc. 1-2. The carrier of the representing
function f(z) in A-integral representation has the following properties:
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(a) it is the countable infinite sum of nowhere dense perfect sets,
(b) the carrier of f],(x) is nowhere dense perfect set for any

positive number ,
(c) for any positive e0 and e (D) (by L. Schwartz) there

exists a positive integer N such that for n>N
mes carrier {(f(x)-- f,(x))p(x)} <e and f{f(x)- f(x)}qg(x)dx

Here
[f,(x)_.f(x) for x such that

[O for x such that If(x)
Afterwards, this notation is often used. Our true aim is to use the
A-integrable function with this carrier instead of smooth functions.
In exact cut-off this A-integrable function with the same power as
the smooth function is used.

The another proof of the Riemann Lebesgue’s theorem showing
his circumstance etc., and the difference between exact cut-off and
natural cut-off are shown in 2. It seems that our theory shows
the inner structure of the elementary particle which satisfies the
causality condition (in the generalized meaning by using Dini’s deriva-
tive as velocity). In 3, using this, a model showing the processes
tending to various physical models is constructed. This model is
useful to search the valuable conditional convergent sequence tending
to function used in quantum field theory 8.

2. The Riemann Lebesgue’s theorem related to the charac.
teristic function of no where dense perfect set. (1) It is well

known that the sequence of functions 1/2 dk--d.(x) (or other
regular functions) converging to (x) gas n tends to ) can be con-
structed. But the carriers of these d,,(x)are the interval (-, ).
Our purpose is to obtain the functions f.(x)(f.J.(x)) such that the
carriers of them has the properties described in 1 and they play the
same (or the resemble) role as d,(x). From this reason the A-integral
representation of distribution obtained by IOH; 1, B.Horpa;msa 2
etc. is very useful. By their method function can be also repre-
sented by A-integrable :function f whose carrier has the properties
described in 1, and fJ can be used for the resemble purpose.
The carrier of the functions f(x), f(x), f,(x) and f.(x) corre-
sponds to the set of the position of the point source.

Definition. If the function f(x) defined in the interval a, b
satisfy the following conditions:

1) rues ix; x e a, b, If(x)
2) there exists a limit lim

then we say that f(x) is A-integrable and the above limit is A-inte-
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gral of f(x).
A-integral representation in [1-2 is very complicated but it has

many advantages.
2 Next, let’s show the concrete construction of nowhere dense

perfect set with positive measure. Namely, choose an interval [0, 1
and take off an open interval with measure 1/5 from the middle of
the first interval [0, 1. Next take off two open intervals with
measure (1/5) from the middle of two residual intervals. By the
iteration of the same process countable infinite times no where
dense perfect set with positive measure is constructed. Let’s show
this. (i) The measure of this set is 1-(1/5/2/5/4/5/..-)-
1--1/5/(1-2/5)-2/3. (ii) Let I. denote the closed set constructed
by n th process. Since the relation 0, 1 IoI... I,... holds
good, then E-’=0 I is a closed set. For any neighbourhood U(p)
of the point p contained in E, there exists a point p" contained in
Io-E. Since there is not any inner point contained in the closure
of E, then E is a no where dense set. (iii) For any neighbourhood
U(p) of the point p contained in E, there exists a point p’ contained
in E such that pp’. Since E is closed and it does not contain
any isolated point, then E is a perfect set. The Riemann Lebesgue’s
theorem is well known 7] and in Fourier analysis this theorem is
used to treat the usual functions. But in the consideration of point
source, function etc. are usually considered. Therefore, let’s give
here another proof which shows the results with respect to these
singular functions.

Let I(x) denote the characteristic function of the set E. Namely
1 for xe EI(x)-
0 for xeE.

Suppose that E is a set with positive measure contained in the
interval I0- [0, 1.

Lemma 1. For measurable set E 0, 1, I(x) exp (2nzix)dx-
C, tends to zero by the order 0(1/#-) (for any e>O) as n tends

ProoL I(x) e L-J0, 1 L[0, 1 for 1_<_n +. Namely, it is
bounded. Then the conclusion of this lemma is obtained. But, for
the above constructed set, it seems that the order of C. tending to
zero is not o(1/n) ([7J, p. 19).. Hence the exact cut-off must be used.

Theorem 1. Suppose that for any eO, there exist a set of
finite disjoint intervals (k-1, 2,..., M) (M is depending to this
set) with the following properties"

(i) I[0,1
(ii) mes U=x,I E)</3
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(iii) mes G%, I Iq/o Iq E)< e/3.

Proof. Considering the eonditions (ii) (iii), let’s ehoose N such
that 2+/N<s/3. Then

< (lA/2n+.2e/3)- (1A/2n- el3)- e
is valid for n> N, where I(x)--=o I(x- k/n). Io,,.(x). Here, from
the uniformly 1 th covering of the interval 0, 1/nJ effected by the

periodicity, 1A/2n is derived (A-I:’’ /sin 2rxda:); from the positive

effect related to the end of (k<-_M) and the condition (ii), 2s/3 is

derived; and from the negative effect related to condition (iii), e/3 is
derived. Hence, Riemann-Lebesgue’s theorem is satisfied for this I(x).

Corollary 1. The closed set contained in 0, 1 satisfies the
conditions of Theorem 1.

Lemma 2. Suppose .that irrational points x, x., ..., x are
contained in the interval [0, 1]. Then for any eO, for any posi-
tive numbers a, a,..., a, contained in 0, 1] and for any positive
integer K there exist positive integers k, n, n:,..., n such that
kK and ]kx-n-aI for i-1, ..., n.

From this Lemma 2 etc. we assert the following
Corollary 2. If f(x) (even one contained in L) has -like

singularities (by Dirac), then C= tlf(x) exp (2nix)dx must not tend

to zero as n tends to o.
From the above Corollary 2 it is easily seen that the essential

points of natural cut-off are not to use infinite point set or no-
where dense perfect set but to use characteristic function of no-
where dense perfect set. For natural cut-off the Nakanishi’s E.R.
integral representation of 6 function (to appear)is also effective, and
it can be also used to represent the process tending to various
physical models. But, since the order of C, tending to zero must
be o(1/n) in our requirement, it seems that exact cut-off is needed
and A-integral itself or E.R. integral itself becomes to very im-
portant one.

3. The model representing the process tending to various
physical models. At the first step, let’s show the diagram of the
processes tending to limit appearing in A-integral representation of
S-like functions.

f,(x)-- [f,(x) f,,(x)-- [f(x).
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Here, f(x) and f(x) are A-integrable functions in local, and - means
the equal in distribution’s space, for example

(A)tf(x)qg(x)dx-f(x)qg(x)dx for (x)e (D)(by L. Schwartz).

A-integral representation has the following defects to the construc-
tion of our model. But, for the explanation of the complicated
physical phenomena, it may also become to advantages. Namely

(1) f(x) must take any large values,
(2) the domain of f(x) (or f(x)) must be contained in all real

axis. (By using other regularization of function, this defect can
be omitted.)

3 the domain of f(x) has the properties in 1. Namely it is
a dense set.

Furthermore we can also choose an approximate function (using
for cut-off satisfying the condition o(1/n)) f,()(x) defined on nowhere
dense perfect set which depends upon k in exp ikx.

Lemma 3. The domain of f(x) must not be nowhere dense.
If it is nowhere dense, then we cannot describe the small be-

havior of d(x). Hence, the conclusion of this lemma is evident. In
the following let’s show the physical models used by us as the cases
tending to limit. Using the source f(x), the cut-off model is con-
structed. Using the source f,(x) (or f,(x))the causality model is
constructed. Using the source f(x) the fixed point source model is
constructed. The above diagram related to A-integral representation
shows the relation among them. It seems that the true form of
elementary particles are the middle (or mixture) of these three models.
A-integral representation shows this fact well.

E.R. representation of function (by Nakanishi) related to the
characteristic function of nowhere dense perfect set I(x) (or I(x)
itself) has the following advantages.

(1) It may take bounded values except for 0.
(2) It may contain in bounded intervals.
(3) Its domain is a nowhere dense perfect set.
But, it seems that this representation does not necessarily satisfy

the condition such that the order of C is o(1/n). If there is no
need for satisfying this condition, this model and natural cut-off can
be used.
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