12. Note on PL-Homeomorphisms of Euclidean n-Space into Itself

By Masahisa Adachi

Mathematical Institute, Nagoya University (Comm. by Kinjirô KUNUGI, M.J.A., Jan. 12, 1965)

1. Introduction. Let $\mathcal{G}(n)$ be the space of all homeomorphisms of Euclidean *n*-space \mathbb{R}^n into itself provided with the compact-open topology. Let $\mathcal{H}(n)$ be the subspace of all onto homeomorphisms. Let Pl(n) be the subspace of all *PL*-homeomorphisms and PL(n) be the subspace of all onto *PL*-homeomorphisms. Those elements in $\mathcal{G}(n)$, $\mathcal{H}(n)$, Pl(n) and PL(n) which preserve the origin 0 will be denoted by $\mathcal{G}_0(n)$, $\mathcal{H}_0(n)$, $Pl_0(n)$ and $PL_0(n)$ respectively. Recently Kister [1] has shown that $\mathcal{H}_0(n)$ is a weak kind of deformation retract of $\mathcal{G}_0(n)$.

In the present note we show that $PL_0(n)$ is a weak kind of deformation retract of $Pl_0(n)$. More precisely:

Theorem. There is a continuous map $F: Pl_0(n) \times I \rightarrow Pl_0(n)$, for each n, such that

(1) F(g, 0) = g, for all g in $Pl_0(n)$,

(2) F(g, 1) is in $PL_0(n)$ for all g in $Pl_0(n)$,

(3) F(h, t) is in $PL_0(n)$ for all h in $PL_0(n)$,

t in I.

2. Definitions. Let R^n be a Euclidean *n*-space. We consider an ordinary triangulation on R^n . Let *d* be the usual metric in Euclidean *n*-space R^n . Let ρ be the metric in R^n defined by

$$\rho(x, y) = \max_i |x_i - y_i|,$$

for

$$x = (x_1, x_2, \dots, x_n), \qquad y = (y_1, y_2, \dots, y_n)$$

in \mathbb{R}^n . The cube of side 2r with centre at 0 in \mathbb{R}^n is denoted by C_r . This set is also considered as

$$C_r = \{x \in R^n \mid \rho(0, x) \le r\}.$$

If K is a compact set in \mathbb{R}^n containing 0, we define the square radius of K to be

$$r[K] = \max \{r \mid C_r \subset K\}.$$

If $g_1, g_2: K \to R^n$ are imbeddings of the compact set K, then we say g_1 and g_2 are within ε , if for each x in K it is true that $\rho(g_1(x), g_2(x)) < \varepsilon$. If g is in $Pl_0(n)$ and K is a compact set in R^n , $V(g, K, \varepsilon)$ denotes the subset of all elements h in $Pl_0(n)$ such that $g \mid K$ and $h \mid K$ are within ε . Then the collection of all such $V(g, K, \varepsilon)$ is, of course, a base for $Pl_0(n)$.

If $0 \le a < b < d$ and a < c < d and t is in I = [0, 1], then we define $\theta_i(a, b, c, d) \in PL_0(n)$ to be the PL-homeomorphism of \mathbb{R}^n onto itself, fixed on C_a and outside C_d as follows. Let L be a ray emanating from the origin and coordinatized by distance (in the sense of metric ρ) from the origin. Then θ_i is fixed on [0, a] and on $[d, \infty)$, and it takes b onto (1-t)b+tc and is linear on [a, b] and [b, d]. We denote $\theta_1(a, b, c, d)$ by $\theta(a, b, c, d)$ and $\theta(0, b, c, d)$ by $\theta(b, c, d)$. Clearly $(t; a, b, c, d) \rightarrow \theta_i(a, b, c, d)$ is continuous, regarded as a mapping from a subset of \mathbb{R}^5 into $PL_0(n)$.

3. A useful lemma.

Lemma. Let g and h be in $Pl_0(n)$ with $h(R^n) \subset g(R^n)$. Let a, b, c and d be real numbers satisfying $0 \le a < b$, 0 < c < d and such that $h(C_b) \subset g(C_c)$. Then there is a PL-isotopy¹ $\mathcal{P}_t(g, h; a, b, c, d) = \mathcal{P}_t$ $(t \in I)$ of R^n onto itself satisfying

- 1) $\varphi_0 = 1$,
- 2) $\varphi_1(h(C_b)) \supset g(C_c)$,
- 3) φ_t is fixed outside $g(C_d)$ and on $h(C_a)$,
- 4) $(g, h; a, b, c, d; t) \rightarrow \varphi_t$

is a continuous map from the appropriate subset of $Pl_0(n) \times Pl_0(n) \times R^5$ into $PL_0(n)$.

Proof. Let a' be $r[g^{-1} \circ h(C_a)]$; note that a' < c. Let b' be $r[g^{-1} \circ h(C_a)]$; note that $a' < b' \le c < d$.

We first shrink $h(C_a)$ inside $g(C_{a'})$ with a *PL*-homeomorphism σ fixed outside $h(C_b)$. This can be done as follows. Let a'' be $r[h^{-1} \circ g(C_{a'})]$; note that $a'' \leq a < b$. Define

$$\sigma = \begin{cases} h \circ \theta(a, a'', b) \circ h^{-1}, & \text{on } h(C_b), \\ 1, & \text{elsewhere.} \end{cases}$$

Then σ is in $PL_0(n)$.

Next we get a *PL*-isotopy ψ_t $(t \in I)$ taking $g(C_{b'})$ onto $g(C_{c})$, leaving $g(C_{a'})$, and the exterior of $g(C_{d})$ fixed. Define

$$\psi_{i} = \begin{cases} g \circ \theta_{i}(a', b', c, d) \circ g^{-1}, & \text{on } g(C_{d}), \\ 1, & \text{elsewhere} \end{cases}$$

Then ψ_t is in $PL_0(n)$.

Finally define $\varphi_t = \sigma^{-1} \circ \psi_t \circ \sigma$. Then φ_t is in $PL_0(n)$. It is easy to verify that (1), (2) and (3) are satisfied. The continuity of φ_t depends on the following three propositions.

Proposition 1. Let g be in $Pl_0(n)$, and let r and ε be two positive numbers. Then there is a $\delta > 0$ so that, if g_1 is in $V(g, C_{r+\varepsilon}, \delta)$, then (1) $g_1(C_{r+\varepsilon}) \supset g(C_r)$,

 $(1) \quad y_1(\bigcup_{r+1}) = y_1(\bigcup_r),$

(2) $g_1^{-1}|g(C_r)$ and $g^{-1}|g(C_r)$ are within ε .

Proposition 2. Let C be a finite complex, $h: C \rightarrow R^n$ an imbedding,

¹⁾ By PL-isotopy φ_t we mean an isotopy φ_t such that for each t in [0, 1] φ_t is a PL-homeomorphism.

M. Adachi

D a finite subcomplex in \mathbb{R}^n containing h(C) in its interior, and $g: D \to \mathbb{R}^n$ another imbedding. For any $\varepsilon > 0$, there is a $\delta > 0$ so that, if $g_1: D \to \mathbb{R}^n$, $h_1: C \to \mathbb{R}^n$ are imbeddings within δ of g and h respectively, then $g_1 \circ h_1$ is defined and within ε of $g \circ h$.

Proposition 3. Let g and h be in $Pl_0(n)$, and let a be a nonnegative number such that $h(C_a) \subset g(R^n)$. Let $r = [g^{-1} \circ h(C_a)]$. Then r = r(g, h, a) is continuous simultaneously in the variables g, h and a.

These propositions are proved quite parallel with Propositions 1, 2, 3 in Kister [1].

The continuity of φ_t is easily proved by these propositions.

4. *Proof of Theorem*. Before we give the proof of Theorem we state two more propositions.

Proposition 4. Let g be in $Pl_0(n)$ and r_i be $r[g(C_i)]$ for each positive integer *i*. Then there is an element h in $Pl_0(n)$ such that $h(C_i)=C_{r_i}$, for each *i*, and h depends continuously on g.

Proposition 5. Let $F: Pl_0(n) \times [0, 1) \rightarrow Pl_0(n)$ be continuous, and denote F(g, t) by g_t . Suppose $g_t | C_n = g_{1-(1/2)^n} | C_n$ for all t in $[1-(\frac{1}{2})^n, 1)$ and $n=1, 2, \cdots$. Then F can be extended to $Pl_0(n) \times I$.

These propositions are proved quite parallel with Proposition 4, 5 in Kister [1].

We return to the proof of Theorem. Let g in $Pl_0(n)$ be given. Use Proposition 4 to find h=h(g). First we shall produce a *PL*isotopy α_t : $R^n \rightarrow g(R^n)$ $(t \in I)$ such that

- (b) $\alpha_1(R^n) = g(R^n)$,
- (c) $\alpha_t = \alpha(g, t)$ is continuous in g and t.

We do this in an infinite number of steps. To define $\alpha_t(t \in [0, \frac{1}{2}])$ we use the Lemma for a=0, b=c=1, d=2, and obtain φ_t $(t \in I)$. Define $\alpha_t = \varphi_{2t} \circ h$ $(t \in [0, \frac{1}{2}])$. Then α_t is in $Pl_0(n)$ for $t \in [0, \frac{1}{2}]$, $\alpha_0 = h$, $\alpha_{\frac{1}{2}}(C_1) \supset g(C_1)$ and, by Proposition 4, the Lemma, and Proposition 2, α_t $(t \in [0, \frac{1}{2}])$ is continuous in g and t. Note that $\alpha_{\frac{1}{2}}(C_2) \subset g(C_2)$ by property (3) of the Lemma.

Next we define, α_t $(t \in [\frac{1}{2}, \frac{3}{4}])$ by again using the Lemma, this time for "h"= $\alpha_{\frac{1}{2}}$, a=1, b=c=2, d=3, and we obtain φ_t $(t \in I)$. Now define $\alpha_t = \varphi_{4t-2} \circ \alpha_{\frac{1}{2}}$ $(t \in [\frac{1}{2}, \frac{3}{4}])$. Then α_t is in $Pl_0(n)$ for $t \in [\frac{1}{2}, \frac{3}{4}]$, α_t is an extension of that obtained in the first step, $\alpha_{\frac{3}{4}}(C_2) \supset g(C_2)$, and since $\alpha_{\frac{1}{2}}$ depends continuously on g, we can conclude as before that α_t $(t \in [\frac{1}{2}, \frac{3}{4}])$ is continuous in g and t. Note that $\alpha_{\frac{3}{4}}(C_3) \supset g(C_3)$, and that $\alpha_t | C_1 = \alpha_{\frac{1}{2}} | C_1$ for t in $[\frac{1}{2}, \frac{3}{4}]$, by property (3) of the Lemma.

We continue in this manner defining for each integer n, $\alpha_t \in Pl_0(n)(t \in [1-(\frac{1}{2})^n, 1-(\frac{1}{2})^{n+1}])$ such that $\alpha_{1-(\frac{1}{2})^n}(C_n) \supset g(C_n)$ and $\alpha_t | C_n = \alpha_{1-(\frac{1}{2})^n} | C_n$ for t in $[1-(\frac{1}{2})^n, 1-(\frac{1}{2})^{n+1}]$.

⁽a) $\alpha_0 = h$,

Proposition 5 allows us to define $\alpha_1 \in Pl_0(n)$ so that α_t $(t \in I)$ depends continuously on g and t, and $\alpha_1(R^n) = g(R^n)$.

In the second stage, we produce a *PL*-isotopy $\beta_t \colon R^n \to R^n \ (t \in I)$ such that

- (a) $\beta_0 = h$,
- (b) $\beta_1 = 1$,

(c) $\beta_t = \beta(g, t)$ is continuous in g and t.

This we do again in an infinite number of steps, first obtaining β_t $(t \in [0, \frac{1}{2}])$ as follows. We have $h(C_1) = C_{r_1}$ where $r_1 = r[g(C_1)]$, since h was constructed so as to take cubes onto cubes.

We shall preserve this property throughout the *PL*-isotopy β_t $(t \in I)$. Let *L* be any ray emanating from the origin in \mathbb{R}^n and coordinatized by distance from the origin (in the sense of metric ρ). For *t* in *I*, let φ_t take the interval $[0, r_1]$ in *L* linearly onto $[0, (1-t)r_1+t]$ and translate $[r_1, \infty)$ to $[(1-t)r_1+t, \infty)$. This defines φ_t in $PL_0(n)$ for each *t* in *I*. Now let $\beta_t = \varphi_{2t} \circ h$ ($t \in [0, \frac{1}{2}]$). Then β_t is in $Pl_0(n)$ for $t \in [0, \frac{1}{2}]$, $\beta_0 = h$ and $\beta_{\frac{1}{2}} | C_1 = 1$, and since r_1 and *h* depend continuously on *g*, then φ_{2t} and hence β_t are continuous in *g* and *t*.

Let s_2 be such that $\beta_{\frac{1}{2}}(C_2) = C_{s_2}$, and define β_t $(t \in [\frac{1}{2}, \frac{3}{4}])$ as follows. Let L be any ray as before, and let φ_t $(t \in I)$ take $[1, s_2]$ in L linearly onto $[1, (1-t)s_2+2t]$, translate $[s_2, \infty)$ onto $[(1-t)s_2+2t, \infty)$, and leave [0, 1] fixed. Define $\beta_t = \varphi_{4t-2} \circ \beta_{\frac{1}{2}}(t \in [\frac{1}{2}, \frac{3}{4}])$. Then β_t is in $Pl_0(n)$ for $t \in [\frac{1}{2}, \frac{3}{4}]$, extends β_t $(t \in [0, \frac{3}{4}])$, $\beta_{\frac{3}{4}}|C_2=1$, and β_t . depends continuously on g and t.

Continuing this manner, as in the first stage, we obtain a *PL*-isotopy β_t $(t \in I)$ which depends continuously on g and t.

Now define

$$F(g, t) = \begin{cases} \alpha_{1-2t} \circ \alpha_1^{-1} \circ g, & \text{for } t \text{ in } [0, \frac{1}{2}], \\ \beta_{2t-1} \circ \alpha_1^{-1} \circ g, & \text{for } t \text{ in } [\frac{1}{2}, 1]. \end{cases}$$

Then F(g, t) is in $Pl_0(n)$. It is easy to check that F satisfies (1) and (2). An immediate consequence of Proposition 4 is that h is onto if g is. Each φ_t that occurs in a step of the construction of α_t and β_t is onto, hence α_t and β_t , and finally F(g, t) is onto if g is, so property (3) holds. Continuity of F follows from that of α_t and β_t and from Proposition 1 and 2.

Reference

[1] J. M. Kister: Microbundles are fibre bundles. Ann. of Math., 80, 190-199 (1964).