12. Note on PL-Homeomorphisms of Euclidean n-Space into Itself

By Masahisa Adachi
Mathematical Institute, Nagoya University
(Comm. by Kinjirô KunugI, m.J.A., Jan. 12, 1965)

1. Introduction. Let $\mathcal{G}(n)$ be the space of all homeomorphisms of Euclidean n-space R^{n} into itself provided with the compact-open topology. Let $\mathcal{H}(n)$ be the subspace of all onto homeomorphisms. Let $P l(n)$ be the subspace of all $P L$-homeomorphisms and $P L(n)$ be the subspace of all onto $P L$-homeomorphisms. Those elements in $\mathcal{G}(n), \mathscr{H}(n), P l(n)$ and $P L(n)$ which preserve the origin 0 will be denoted by $\mathcal{G}_{0}(n), \mathscr{H}_{0}(n), P l_{0}(n)$ and $P L_{0}(n)$ respectively. Recently Kister [1] has shown that $\mathcal{H}_{0}(n)$ is a weak kind of deformation retract of $\mathcal{G}_{0}(n)$.

In the present note we show that $P L_{0}(n)$ is a weak kind of deformation retract of $P l_{0}(n)$. More precisely:

Theorem. There is a continuous map $F: P l_{0}(n) \times I \rightarrow P l_{0}(n)$, for each n, such that
(1) $F(g, 0)=g$, for all g in $P l_{0}(n)$,
(2) $F(g, 1)$ is in $P L_{0}(n)$ for all g in $P l_{0}(n)$,
(3) $F(h, t)$ is in $P L_{0}(n)$ for all h in $P L_{0}(n)$, t in I.
2. Definitions. Let R^{n} be a Euclidean n-space. We consider an ordinary triangulation on R^{n}. Let d be the usual metric in Euclidean n-space R^{n}. Let ρ be the metric in R^{n} defined by

$$
\rho(x, y)=\max _{i}\left|x_{i}-y_{i}\right|,
$$

for

$$
x=\left(x_{1}, x_{2}, \cdots, x_{n}\right), \quad y=\left(y_{1}, y_{2}, \cdots, y_{n}\right)
$$

in R^{n}. The cube of side $2 r$ with centre at 0 in R^{n} is denoted by C_{r}. This set is also considered as

$$
C_{r}=\left\{x \in R^{n} \mid \rho(0, x) \leq r\right\} .
$$

If K is a compact set in R^{n} containing 0 , we define the square radius of K to be

$$
r[K]=\max \left\{r \mid C_{r} \subset K\right\} .
$$

If $g_{1}, g_{2}: K \rightarrow R^{n}$ are imbeddings of the compact set K, then we say g_{1} and g_{2} are within ε, if for each x in K it is true that $\rho\left(g_{1}(x), g_{2}(x)\right)<\varepsilon$. If g is in $P l_{0}(n)$ and K is a compact set in $R^{n}, V(g, K, \varepsilon)$ denotes the subset of all elements h in $P l_{0}(n)$ such that $g \mid K$ and $h \mid K$ are within ε. Then the collection of all such $V(g, K, \varepsilon)$ is, of course, a base for $P l_{0}(n)$.

If $0 \leq a<b<d$ and $a<c<d$ and t is in $I=[0,1]$, then we define $\theta_{t}(a, b, c, d) \in P L_{0}(n)$ to be the $P L$-homeomorphism of R^{n} onto itself, fixed on C_{a} and outside C_{d} as follows. Let L be a ray emanating from the origin and coordinatized by distance (in the sense of metric ρ) from the origin. Then θ_{t} is fixed on $[0, a]$ and on $[d, \infty)$, and it takes b onto $(1-t) b+t c$ and is linear on $[a, b]$ and $[b, d]$. We denote $\theta_{1}(a, b, c, d)$ by $\theta(a, b, c, d)$ and $\theta(0, b, c, d)$ by $\theta(b, c, d)$. Clearly $(t ; a, b, c, d) \rightarrow \theta_{t}(a, b, c, d)$ is continuous, regarded as a mapping from a subset of R^{5} into $P L_{0}(n)$.
3. A useful lemma.

Lemma. Let g and h be in $P l_{0}(n)$ with $h\left(R^{n}\right) \subset g\left(R^{n}\right)$. Let a, b, c and d be real numbers satisfying $0 \leq a<b, 0<c<d$ and such that $h\left(C_{b}\right) \subset g\left(C_{c}\right)$. Then there is a $P L$-isotopy ${ }^{1} \varphi_{t}(g, h ; a, b, c, d)=\varphi_{t}$ ($t \in I$) of R^{n} onto itself satisfying

1) $\varphi_{0}=1$,
2) $\varphi_{1}\left(h\left(C_{b}\right)\right) \supset g\left(C_{c}\right)$,
3) φ_{t} is fixed outside $g\left(C_{d}\right)$ and on $h\left(C_{a}\right)$,
4) $(g, h ; a, b, c, d ; t) \rightarrow \varphi_{t}$
is a continuous map from the appropriate subset of $P l_{0}(n) \times P l_{0}(n) \times R^{5}$ into $P L_{0}(n)$.

Proof. Let a^{\prime} be $r\left[g^{-1} \circ h\left(C_{a}\right)\right]$; note that $a^{\prime}<c$. Let b^{\prime} be $r\left[g^{-1} \circ h\left(C_{a}\right)\right] ;$ note that $a^{\prime}<b^{\prime} \leq c<d$.

We first shrink $h\left(C_{a}\right)$ inside $g\left(C_{a^{\prime}}\right)$ with a $P L$-homeomorphism σ fixed outside $h\left(C_{b}\right)$. This can be done as follows. Let $a^{\prime \prime}$ be $r\left[h^{-1} \circ g\left(C_{a^{\prime}}\right)\right]$; note that $a^{\prime \prime} \leq a<b$. Define

$$
\sigma= \begin{cases}h \circ \theta\left(a, a^{\prime \prime}, b\right) \circ h^{-1}, & \text { on } h\left(C_{b}\right), \\ 1, & \text { elsewhere } .\end{cases}
$$

Then σ is in $P L_{0}(n)$.
Next we get a $P L$-isotopy $\psi_{t}(t \in I)$ taking $g\left(C_{b^{\prime}}\right)$ onto $g\left(C_{c}\right)$, leaving $g\left(C_{a^{\prime}}\right)$, and the exterior of $g\left(C_{d}\right)$ fixed. Define

$$
\psi_{t}= \begin{cases}g \circ \theta_{t}\left(a^{\prime}, b^{\prime}, c, d\right) \circ g^{-1}, & \text { on } g\left(C_{d}\right), \\ 1, & \text { elsewhere } .\end{cases}
$$

Then ψ_{t} is in $P L_{0}(n)$.
Finally define $\varphi_{t}=\sigma^{-1} \circ \psi_{t} \circ \sigma$. Then φ_{t} is in $P L_{0}(n)$. It is easy to verify that (1), (2) and (3) are satisfied. The continuity of φ_{t} depends on the following three propositions.

Proposition 1. Let g be in $P l_{0}(n)$, and let r and ε be two positive numbers. Then there is a $\delta>0$ so that, if g_{1} is in $V\left(g, C_{r+\varepsilon}, \delta\right)$, then
(1) $g_{1}\left(C_{r+\varepsilon}\right) \supset g\left(C_{r}\right)$,
(2) $g_{1}^{-1} \mid g\left(C_{r}\right)$ and $g^{-1} \mid g\left(C_{r}\right)$ are within ε.

Proposition 2. Let C be a finite complex, $h: C \rightarrow R^{n}$ an imbedding,

[^0]D a finite subcomplex in R^{n} containing $h(C)$ in its interior, and $g: D \rightarrow R^{n}$ another imbedding. For any $\varepsilon>0$, there is a $\delta>0$ so that, if $g_{1}: D \rightarrow R^{n}$, $h_{1}: C \rightarrow R^{n}$ are imbeddings within δ of g and h respectively, then $g_{1} \circ h_{1}$ is defined and within ε of $g \circ h$.

Proposition 3. Let g and h be in $P l_{0}(n)$, and let a be a nonnegative number such that $h\left(C_{a}\right) \subset g\left(R^{n}\right)$. Let $r=\left[g^{-1} \circ h\left(C_{a}\right)\right]$. Then $r=r(g, h, a)$ is continuous simultaneously in the variables g, h and a.

These propositions are proved quite parallel with Propositions 1, 2, 3 in Kister [1].

The continuity of φ_{t} is easily proved by these propositions.
4. Proof of Theorem. Before we give the proof of Theorem we state two more propositions.

Proposition 4. Let g be in $P l_{0}(n)$ and r_{i} be $r\left[g\left(C_{i}\right)\right]$ for each positive integer i. Then there is an element h in $P l_{0}(n)$ such that $h\left(C_{i}\right)=C_{r_{i}}$, for each i, and h depends continuously on g.

Proposition 5. Let $F: P l_{0}(n) \times[0,1) \rightarrow P l_{0}(n)$ be continuous, and denote $F(g, t)$ by g_{t}. Suppose $g_{t}\left|C_{n}=g_{1-(1 / 2)^{n}}\right| C_{n}$ for all t in $\left[1-\left(\frac{1}{2}\right)^{n}, 1\right)$ and $n=1,2, \cdots$. Then F can be extended to $P l_{0}(n) \times I$.

These propositions are proved quite parallel with Proposition 4, 5 in Kister [1].

We return to the proof of Theorem. Let g in $P l_{0}(n)$ be given. Use Proposition 4 to find $h=h(g)$. First we shall produce a $P L$ isotopy $\alpha_{t}: R^{n} \rightarrow g\left(R^{n}\right)(t \in I)$ such that
(a) $\alpha_{0}=h$,
(b) $\alpha_{1}\left(R^{n}\right)=g\left(R^{n}\right)$,
(c) $\alpha_{t}=\alpha(g, t)$ is continuous in g and t.

We do this in an infinite number of steps. To define $\alpha_{t}\left(t \in\left[0, \frac{1}{2}\right]\right)$ we use the Lemma for $a=0, b=c=1, d=2$, and obtain $\varphi_{t}(t \in I)$. Define $\alpha_{t}=\varphi_{2 t} \circ h\left(t \in\left[0, \frac{1}{2}\right]\right)$. Then α_{t} is in $P l_{0}(n)$ for $t \in\left[0, \frac{1}{2}\right], \alpha_{0}=h$, $\alpha_{\frac{1}{2}}\left(C_{1}\right) \supset g\left(C_{1}\right)$ and, by Proposition 4, the Lemma, and Proposition 2, $\alpha_{t}\left(t \in\left[0, \frac{1}{2}\right]\right)$ is continuous in g and t. Note that $\alpha_{\frac{1}{2}}\left(C_{2}\right) \subset g\left(C_{2}\right)$ by property (3) of the Lemma.

Next we define, $\alpha_{t}\left(t \in\left[\frac{1}{2}, \frac{3}{4}\right]\right)$ by again using the Lemma, this time for " h " $=\alpha_{\frac{1}{2}}, a=1, b=c=2, \mathrm{~d}=3$, and we obtain $\varphi_{t}(t \in I)$. Now define $\alpha_{t}=\varphi_{4 t-2} \circ \alpha_{\frac{1}{2}}\left(t \in\left[\frac{1}{2}, \frac{3}{4}\right]\right)$. Then α_{t} is in $P l_{0}(n)$ for $t \in\left[\frac{1}{2}, \frac{3}{4}\right], \alpha_{t}$ is an extension of that obtained in the first step, $\alpha_{\frac{3}{4}}\left(C_{2}\right) \supset g\left(C_{2}\right)$, and since $\alpha_{\frac{1}{2}}$ depends continuously on g, we can conclude as before that $\alpha_{t}\left(t \in\left[\frac{1}{2}, \frac{3}{4}\right]\right)$ is continuous in g and t. Note that $\alpha_{\frac{3}{4}}\left(C_{3}\right) \subset g\left(C_{3}\right)$, and that $\alpha_{t}\left|C_{1}=\alpha_{\frac{1}{2}}\right| C_{1}$ for t in $\left[\frac{1}{2}, \frac{3}{4}\right]$, by property (3) of the Lemma.

We continue in this manner defining for each integer n, $\alpha_{t} \in P l_{0}(n)\left(t \in\left[1-\left(\frac{1}{2}\right)^{n}, 1-\left(\frac{1}{2}\right)^{n+1}\right]\right)$ such that $\alpha_{1-\left(\frac{1}{2}\right)^{n}}\left(C_{n}\right) \supset g\left(C_{n}\right)$ and $\alpha_{t}\left|C_{n}=\alpha_{1-\left(\frac{1}{2}\right)^{n}}\right| C_{n}$ for t in [1- $\left.\left(\frac{1}{2}\right)^{n}, 1-\left(\frac{1}{2}\right)^{n+1}\right]$.

Proposition 5 allows us to define $\alpha_{1} \in P l_{0}(n)$ so that $\alpha_{t}(t \in I)$ depends continuously on g and t, and $\alpha_{1}\left(R^{n}\right)=g\left(R^{n}\right)$.

In the second stage, we produce a $P L$-isotopy $\beta_{t}: R^{n} \rightarrow R^{n}(t \in I)$ such that
(a) $\beta_{0}=h$,
(b) $\beta_{1}=1$,
(c) $\beta_{t}=\beta(g, t)$ is continuous in g and t.

This we do again in an infinite number of steps, first obtaining β_{t} $\left(t \in\left[0, \frac{1}{2}\right]\right)$ as follows. We have $h\left(C_{1}\right)=C_{r_{1}}$ where $r_{1}=r\left[g\left(C_{1}\right)\right]$, since h was constructed so as to take cubes onto cubes.

We shall preserve this property throughout the $P L$-isotopy β_{t} ($t \in I$). Let L be any ray emanating from the origin in R^{n} and coordinatized by distance from the origin (in the sense of metric ρ). For t in I, let φ_{t} take the interval $\left[0, r_{1}\right]$ in L linearly onto $\left[0,(1-t) r_{1}+t\right]$ and translate $\left[r_{1}, \infty\right)$ to $\left[(1-t) r_{1}+t, \infty\right)$. This defines φ_{t} in $P L_{0}(n)$ for each t in I. Now let $\beta_{t}=\varphi_{2 t} \circ h\left(t \in\left[0, \frac{1}{2}\right]\right)$. Then β_{t} is in $P l_{0}(n)$ for $t \in\left[0, \frac{1}{2}\right], \beta_{0}=h$ and $\left.\beta_{\frac{1}{2}} \right\rvert\, C_{1}=1$, and since r_{1} and h depend continuously on g, then $\varphi_{2 t}$ and hence β_{t} are continuous in g and t.

Let s_{2} be such that $\beta_{\frac{1}{2}}\left(C_{2}\right)=C_{s_{2}}$, and define $\beta_{t}\left(t \in\left[\frac{1}{2}, \frac{3}{4}\right]\right)$ as follows. Let L be any ray as before, and let $\varphi_{t}(t \in I)$ take $\left[1, s_{2}\right]$ in L linearly onto $\left[1,(1-t) s_{2}+2 t\right]$, translate $\left[s_{2}, \infty\right)$ onto $\left[(1-t) s_{2}+\right.$ $2 t, \infty)$, and leave $[0,1]$ fixed. Define $\beta_{t}=\varphi_{4 t-2} \beta_{\frac{1}{2}}\left(t \in\left[\frac{1}{2}, \frac{3}{4}\right]\right)$. Then β_{t} is in $P l_{0}(n)$ for $t \in\left[\frac{1}{2}, \frac{3}{4}\right]$, extends $\beta_{t}\left(t \in\left[0, \frac{3}{4}\right]\right), \left.\beta_{\frac{3}{4}} \right\rvert\, C_{2}=1$, and β_{t} depends continuously on g and t.

Continuing this manner, as in the first stage, we obtain a $P L$ isotopy $\beta_{t}(t \in I)$ which depends continuously on g and t.

Now define

$$
F(g, t)= \begin{cases}\alpha_{1-2 t} \circ \alpha_{1}^{-1} \circ g, & \text { for } t \text { in }\left[0, \frac{1}{2}\right], \\ \beta_{2 t-1} \circ \alpha_{1}^{-1} \circ g, & \text { for } t \text { in }\left[\frac{1}{2}, 1\right]\end{cases}
$$

Then $F(g, t)$ is in $P l_{0}(n)$. It is easy to check that F satisfies (1) and (2). An immediate consequence of Proposition 4 is that h is onto if g is. Each φ_{t} that occurs in a step of the construction of α_{t} and β_{t} is onto, hence α_{t} and β_{t}, and finally $F(g, t)$ is onto if g is, so property (3) holds. Continuity of F follows from that of α_{t} and β_{t} and from Proposition 1 and 2.

Reference

[1] J. M. Kister: Microbundles are fibre bundles. Ann. of Math., 80, 190-199 (1964).

[^0]: 1) By $P L$-isotopy φ_{t} we mean an isotopy φ_{t} such that for each t in $[0,1] \varphi_{t}$ is a $P L$-homeomorphism.
