11. On the Sequence of Fourier Coefficients

By P. L. Sharma
Department of Mathematics, University of Saugar, India
(Comm. by Kinjirô KunugI, m.J.A., Jan. 12, 1965)

1. Let $A:\left(d_{n, k}\right), n, k=0,1,2, \cdots$ and $d_{n, 0}$, be a triangular Toeplitz matrix satisfying the conditions

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d_{n, k}=1 \text { for every fixed } k \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=0}^{n}\left|\Delta d_{n, k}\right| \leq K \tag{1.2}
\end{equation*}
$$

where

$$
\Delta d_{n, k}=d_{n, k}-d_{n, k+1}
$$

and K being an absolute constant independent of n. It is easy to see that the third condition of Silverman Toeplitz theorem [page 64, 1] is automatically satisfied.

An infinite series $\sum u_{n}$ with the sequence of partial sum $\left\{S_{n}\right\}$ is said to be summable A to the sum S if

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{k=0}^{n} \Delta d_{n, k} S_{k}=S \tag{1.3}
\end{equation*}
$$

We obtain another method of summation viz. A. (C, 1) by superimposing the method A on the Cesàro mean of order one.
2. Let $f(x)$ be a function which is integrable in the sense of Lebesgue over the interval $(-\pi, \pi)$ and is defined outside this by periodicity. Let the Fourier Series of $f(x)$ be

$$
\begin{equation*}
\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)=\frac{1}{2} a_{0}+\sum_{1}^{\infty} A_{n}(x) \tag{2.1}
\end{equation*}
$$

then the conjugate series of (2.1) is

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(b_{n} \cos n x-a_{n} \sin n x\right)=\sum_{1}^{\infty} B_{n}(x) \tag{2.2}
\end{equation*}
$$

We write

$$
\psi(t)=f(x+t)+f(x-t)-l .
$$

Siddiqui [4] has proved that, if

$$
\begin{equation*}
\sum_{k=0}^{n}\left|\Delta^{2} d_{n, k}\right|=o(1) \tag{2.3}
\end{equation*}
$$

and $\psi(t)$ is of bounded variation in $(0, \pi)$, then $\left\{n B_{n}(x)\right\}$ is summable A to l at $t=x$. Recently he [5] gave a necessary and sufficient condition on A for the validity of the above theorem.

The object of this paper is to prove the following theorem:
Theorem. If

$$
\begin{equation*}
\Psi(t)=\int_{0}^{t}|\psi(t)| d t=o\left(t / \log \frac{1}{t}\right) \quad \text { as } t \rightarrow 0 \tag{2.4}
\end{equation*}
$$

and for some γ with $0<\gamma<1$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{k=0}^{n} K^{\gamma}\left|\Delta^{2} d_{n, k}\right|=o(1) \tag{2.5}
\end{equation*}
$$

then the sequence $\left\{n B_{n}(x)\right\}$ is summable $A \cdot(C, 1)$ to the sum l / π.
It may be noted here that the regular matrics which satisfy the condition (2.5) with $\gamma=0$ are called strongly regular [2].

If we choose $\Delta d_{n, k}=\frac{1}{(n-k+1) \log n}$, summability A reduces to Harmonic summability. It is easy to see that (2.5) is also satisfied. Hence our theorem includes the result of Varsney [8] as a particular case.
3. Proof of the theorem. If we denote the $(C, 1)$ transform of the sequence $\left\{n B_{n}(x)\right\}$ by ρ_{n}, we have after Mohanty and Nanda [3],

$$
\begin{equation*}
\rho_{n}-l / \pi=\frac{1}{\pi} \int_{0}^{\delta} \psi(t)\left[\frac{\sin n t}{n t^{2}}-\frac{\cos n t}{t}\right] d t+o(1) \tag{3.1}
\end{equation*}
$$

by Riemann-Lebesgue theorem, δ being constant greater than zero.
On account of regularity of the A method of summation. We need only to prove that

$$
\begin{equation*}
I=\frac{1}{\pi} \sum_{\substack{k=1 \\ 1 \mathrm{~m} n \rightarrow \infty}}^{n} \Delta d_{n, k} \int_{0}^{\delta} \psi(t) g_{n}(t) d t=o(1) \tag{3.2}
\end{equation*}
$$

where

$$
\begin{equation*}
g_{n}(t)=\frac{\sin n t}{n t^{2}}-\frac{\cos n t}{t} \tag{3.3}
\end{equation*}
$$

We require the following inequalities which can be easily obtained by expanding sine and cosine in powers of n and t :

$$
\begin{align*}
g_{n}(t) & =O\left(n^{2} t\right) \tag{3.4}\\
& =O(n)
\end{align*}
$$

and

$$
\begin{equation*}
g_{n}(t)=O\left(t^{-1}\right) . \tag{3.5}
\end{equation*}
$$

It is also known [7] that

$$
\begin{equation*}
\sum_{\nu=1}^{n} \frac{\sin \nu}{\nu}=O(1) \tag{3.6}
\end{equation*}
$$

Now, for $0<\gamma<1$,

$$
\begin{aligned}
I & =\frac{1}{\pi} \sum_{k=1}^{n} \Delta d_{n, k}\left\{\int_{0}^{k^{-1}}+\int_{k^{-1}}^{k^{-\gamma}}+\int_{k-\gamma}^{\delta}\right\} g_{n}(t) d t \\
& =\frac{1}{\pi}\left\{\sum_{k=1}^{n} \Delta d_{n, k}\left(I_{1}+I_{2}+I_{3}\right)\right\} \\
& =\frac{1}{\pi}\left[\tau_{n}\left(I_{1}\right)+\tau_{n}\left(I_{2}\right)+\tau_{n}\left(I_{3}\right)\right], \quad \text { say. }
\end{aligned}
$$

Using (3.4), we get

$$
\begin{aligned}
\left|I_{1}\right| & \leq \int_{0}^{k^{-1}}|\psi(t)|\left|g_{n}(t)\right| d t \\
& \leq O(k) \Psi(1 / k) \\
& =o(1 / \log k)+o(1) \\
& =o(1) \text { as } k \rightarrow \infty .
\end{aligned}
$$

Further, with the help of (3.5), we write

$$
\begin{aligned}
\left|I_{2}\right| & \leq O(1) \cdot \int_{k^{-1}}^{k^{-\gamma}} \frac{|\psi(t)|}{t} d t \\
& =O(1) \cdot\left\{\left[\frac{\Psi(t)}{t}\right]_{k^{-1}}^{k^{-\gamma}}+\int_{k^{-1}}^{k^{-\gamma}} \frac{\Psi(t)}{t^{2}} d t\right\} \\
& =o\left(\frac{1}{\log k}\right)+o(1) \cdot(\log \gamma) \\
& =o(1) \quad \text { as } k \rightarrow \infty .
\end{aligned}
$$

Thus the first two terms in (3.7) can be made as small as we please by choosing n sufficiently large as the transformation τ_{n} is regular.

From (3.3) and (3.5), we write [see also, 6]

$$
\begin{aligned}
G_{\nu}(t) & =g_{1}(t)+\cdots+g_{\nu}(t) \\
& =\frac{1}{t^{2}} \sum_{\nu=1}^{n} \frac{\sin \nu t}{\nu}-\frac{1}{t} \sum_{\nu=1}^{n} \cos \nu t \\
& =O\left(\frac{1}{t^{2}}\right)-\frac{1}{t} D_{\nu}(t) \\
& =O\left(\frac{1}{t^{2}}\right)
\end{aligned}
$$

where $D_{\nu}(t)$ is the Dirichlet Kernel for convergence of Fourier Series, and it is known that $D_{\nu}(t)=O\left(\frac{1}{t}\right)$. It is easy to see that $\sum\left|\Delta d_{n, k}\right|<\infty$ and $\sum k^{\gamma}\left|\Delta^{2} d_{n, k}\right|<\infty$, imply that $k \Delta^{\gamma} d_{n, k} \rightarrow 0$, hence using Abel transformation, we write

$$
\begin{aligned}
\left|\tau_{n}\left(I_{3}\right)\right| & =\left|\sum_{k=1}^{n} \Delta d_{n, k} \int_{k-\gamma}^{\delta} \psi(t)\left[G_{k}(t)-G_{k-1}(t)\right] d t\right| \\
& \leq\left|\sum_{k=1}^{n-1} \Delta^{2} d_{n, k} \int_{k-\gamma}^{\delta} \psi(t) G_{k}(t) d t\right| \\
& +\left|\sum_{k=2}^{n} \Delta d_{n, k} \cdot \int_{k-\gamma}^{(k-1)^{-\gamma}} \psi(t) G_{k-1}(t) d t\right|+o(1) \\
& =L_{1}+L_{2}, \quad \text { say. } \\
L_{1} & \leq O(1) \cdot\left\{\sum_{1}^{n-1}\left|\Delta^{2} d_{n, k}\right| \int_{k-\gamma}^{\delta} \frac{|\psi(t)|}{t^{2}} d t\right\} \\
& =O(1)\left\{\sum_{1}^{n-1} k^{\gamma}\left|\Delta^{2} d_{n, k}\right| \int_{k-\gamma}^{\delta} \frac{|\psi(t)|}{t} d t\right\} \\
& =O(1)\left\{\sum_{1}^{n-1} k^{\gamma}\left|\Delta^{2} d_{n, k}\right|\right\} \cdot\left\{o\left(\frac{1}{\log k}\right)+o(\log \gamma)\right\}, \quad \text { by (3.5), } \\
& =o(1), \text { with the hypothesis (2.5). }
\end{aligned}
$$

Further,

$$
\begin{aligned}
L_{2} & =O(1) \cdot\left\{\sum_{k=2}^{n}\left|\Delta d_{n, k}\right| \int_{k-\gamma}^{(k-1)^{-\gamma}} \frac{|\psi(t)|}{t^{2}} d t\right\} \\
& =O(1)\left\{\sum_{k=2}^{n} k^{\gamma}\left|\Delta d_{n, k}\right| \int_{k-\gamma}^{(k-1)^{-\gamma}} \frac{|\psi(t)|}{t} d t\right\} \\
& =O(1)\left\{\sum_{k=2}^{n} k^{\gamma}\left|\Delta d_{n, k}\right|\right\}\left\{\left[\frac{\Psi(t)}{t}\right]_{k-\gamma}^{(k-1)^{-\gamma}}-\int_{k-\gamma}^{(k-1)^{-\gamma}} \frac{1}{t \log \frac{1}{t}} d t\right\} \\
& =o(1) .
\end{aligned}
$$

This completes the proof of the theorem.

References

[1] R. G. Cooke: Infinite Matrices and Sequence Spaces. (1950).
[2] G. C. Lorentz: Direct theorems on methods of summability. Canad. Jour. Math., 1, 305-319 (1949).
[3] R. Mohanty and M. Nanda: On the behaviour of Fourier Coefficients. Proc. Amer. Math. Soc., 5, 79-84 (1954).
[4] J. A. Siddiqi: On the theorem of Fejér. Math. Leit., 61, 79-81 (1954).
[5] -: The Fourier Coefficients of continuous functions of bounded variation. Math. Annalen, 143, 103-108 (1961).
[6] P. L. Sharma: On the Sequence of Fourier Coefficients. Proc. Amer. Math. Soc., 15, 337-340 (1964).
[7] E. C. Titchmarsh: Theory of Functions. p. 440 (1952).
[8] O. P. Varsney: On the Sequence of Fourier Coefficients. Proc. Amer. Math. Soc., 10, 790-795 (1959).

