8. On Newman Algebras. II

By F. M. Sioson

Department of Mathematics, University of Florida (Comm. by Kinjirô Kunugi, m.J.A., Jan. 12, 1965)
3. The Equational Basis B. To show the equational completeness of system B, it will suffice to derive \bar{N}_{2}^{+}from it, because the ${ }^{+\cdot}$-transforms of the equations of \mathbf{B} and \bar{N}_{2}^{+}yield precisely Wooyenaka's axiom system II (see [7] and [8]):

This implies then that $\mathbf{B}^{+\cdot}$ is an equational basis for Newman algebras and the superfluousness of \bar{N}_{2}^{\cdot} in Wooyenaka's system II.
3.1. $x x=x$.

$$
x=x(x+\bar{x})=x x+x \bar{x}=x x \quad\left(N_{2}, N_{1}, \bar{N}_{2}\right)
$$

3.2. $x \overline{\bar{x}}=\overline{\bar{x}}$.

$$
x \overline{\bar{x}}=x \overline{\bar{x}}+\bar{x} \overline{\bar{x}}=(x+\bar{x}) \overline{\bar{x}}=\overline{\bar{x}}\left(\bar{N}_{2}, N_{1}^{\bullet}, N_{2}^{\bullet}\right) .
$$

3.3. $x+\bar{x}=y+\bar{y}$.
$x+\bar{x}=(x+\bar{x})(y+\bar{y})=y+\bar{y}\left(N_{2}, N_{2}^{\bullet}\right)$.
3.4. $x+\bar{x}=\bar{x}+x$.
(a) $(\bar{x}+x) \overline{\bar{x}}=\bar{x} \overline{\bar{x}}+x \overline{\bar{x}}=\bar{x} \overline{\bar{x}}+\overline{\bar{x}}=\bar{x} \overline{\bar{x}}+\overline{\bar{x}} \overline{\bar{x}}=(\bar{x}+\overline{\bar{x}}) \overline{\bar{x}}=\overline{\bar{x}}\left(N_{1}{ }^{\circ}, 3.2,3.1\right.$,
$\left.N_{1}^{\bullet}, N_{2}^{\bullet}\right)$.
(b) $\quad(\bar{x}+x) \bar{x}=\bar{x} \bar{x}+x \bar{x}=\bar{x} \bar{x}=\bar{x} \quad\left(N_{1}^{\bullet}, \bar{N}_{2}, 3.1\right)$.

Then $x+\bar{x}=\bar{x}+\bar{x}=(\bar{x}+x) \bar{x}+(\bar{x}+x) \overline{\bar{x}}=(\bar{x}+x)(\bar{x}+\overline{\bar{x}})=\bar{x}+x$ (3.3, (a)-(b), N_{1}, N_{2}).
3.5. $\bar{x}=x$.
$\bar{x}=x \bar{x}=x \bar{x}+x \bar{x}=x(\bar{x}+\bar{x})=x(\bar{x}+\bar{x})=x\left(3.2, \bar{N}_{2}, N_{1}, 3.4, N_{2}\right)$.
3.6. $(y \bar{y})(\overline{y \bar{y}})=y \bar{y}$.

$$
\begin{aligned}
(y \bar{y})(y \bar{y}) & =(y \bar{y})(\bar{y} \bar{y})+y \bar{y}=(y \bar{y})(\bar{y})+(y \bar{y})^{2}=(y \bar{y})(\overline{y \bar{y}}+y \bar{y}) \\
& =(y \bar{y})(y \bar{y}+\bar{y})=y \bar{y}\left(\overline{N_{2}}, 3.1,, N_{1}, 3.4, N_{2}\right) .
\end{aligned}
$$

3.7. $\overline{y \bar{y}}=y+\bar{y}$.
$\overline{y \bar{y}}=(y \bar{y}+\overline{y \bar{y}})(y \bar{y})=(y \bar{y})(\overline{y \bar{y}})+\overline{(y \bar{y})^{2}}=y \bar{y}+\overline{y \bar{y}}=y+\bar{y} \quad\left(N_{2}^{*}, N_{1}^{*}\right.$,
3.6-3.1, 3.3).
3.8. $x \bar{x}=y \bar{y}(3.5,3.7,3.3,3.7,3.5)$.
3.9. $x(y \bar{y})=y \bar{y}$.

$$
\begin{aligned}
x(y \bar{y}) & =x(x \bar{x})=x(x \bar{x})+x \bar{x}=x(x \bar{x}+\bar{x})=x(x \bar{x}+\bar{x} \bar{x}) \\
& =x((x+\bar{x}) \bar{x})=x \bar{x}=y \bar{y}\left(3.8, \bar{N}_{2}, N_{1}, 3.1, N_{1}, N_{2}^{*}, 3.8\right)
\end{aligned}
$$

3.10. $y \bar{y}+x=x$.

$$
\begin{aligned}
& y \bar{y}+x=x(y \bar{y})+x(y+\bar{y})=x(y \bar{y}+(y+\bar{y}))=x(y \bar{y}+\overline{y \bar{y}})=x \quad\left(3.9-N_{2},\right. \\
& \left.N_{1}, 3.7, N_{2}\right) .
\end{aligned}
$$

$\mathbf{B} N_{1}$. The indpendence of N_{1} in \mathbf{B} is shown by the model \bar{P} of Y. Wooyenaka [8] page 86.
$\mathbf{B} N_{1}{ }^{-}$. The independence-model of $N_{1}{ }^{-}$in \mathbf{B} is obtained from the preceding model by Wooyenaka by transposing its + -table and --table.
$\mathbf{B} N_{2}$. The following model proves the independence of N_{2} from the rest of \mathbf{B} :

+	0	1
0	0	1
1	1	1

.	0	1
0	0	1
1	0	1

y	\bar{y}
0	1
1	0

Observe here that $1(0+\overline{0}) \neq 1$.
$\mathbf{B} N_{2}^{+}$. The model for independence of $N_{2}{ }^{\bullet}$ in B is obtained from $\mathbf{B} N_{2}$ by transposing its --table.
$\mathbf{B} \bar{N}_{2}$. The following is a model for \bar{N}_{2} 's independence from the rest of B :

+	0	1
0	0	1
1	1	1

\cdot	0	1
0	0	0
1	0	1

y	\bar{y}
0	1
1	1

Here note that $0+1 \overline{1} \neq 0$.
4. The Equational Basis C. To show the adequacy of \mathbf{C} as a formulation of Newman algebras, we shall derive \bar{N}_{2}^{+}and N_{6} (and hence \mathbf{A}) from it.
4.1. $x+y \bar{y}=x$.

$$
x=x(x+\bar{x})=x x+x \bar{x}=x+y \bar{y}\left(N_{2}, N_{1}, N_{5}-N_{8}\right)
$$

4.2. $x+\bar{x}=y+\bar{y}\left(N_{2}, N_{3}, N_{3}\right)$.
4.3. $\overline{\bar{x}} x=\overline{\bar{x}}$.

$$
\overline{\bar{x}}=\overline{\bar{x}}(x+\bar{x})=\overline{\bar{x}} x+\overline{\bar{x}} \bar{x}=\overline{\bar{x}} x+\bar{x} \overline{\bar{x}}=\overline{\bar{x}} x \quad\left(N_{2}, N_{1}, N_{3}, 4.1\right) .
$$

4.4. $\bar{x}+x=x+\bar{x}$.

From the identities (a) $\overline{\bar{x}}=\overline{\bar{x}}(\bar{x}+\bar{x})=\bar{x} \bar{x}+\bar{x}^{2}=\bar{x} \bar{x}+\bar{x}=\bar{x} \bar{x}+\bar{x} x=\bar{x}(\bar{x}+x)=$ $(\bar{x}+x) \overline{\bar{x}}\left(N_{2}, N_{1}, N_{\mathrm{b}}, 4.3, N_{1}, N_{3}\right)$ and (b) $\bar{x}=\bar{x}+x \bar{x}=\bar{x} \bar{x}+\bar{x} x=\bar{x}(\bar{x}+x)=$ $(\bar{x}+x) \bar{x}\left(4.1, N_{5}-N_{3}, N_{1}, N_{3}\right)$, we obtain $x+\bar{x}=\bar{x}+\bar{x}=(\bar{x}+x) \bar{x}+(\bar{x}+x) \overline{\bar{x}}=$ $(\bar{x}+x)(\bar{x}+\bar{x})=\bar{x}+x\left(4.2,(\mathrm{a})-(\mathrm{b}), N_{1}, N_{2}\right)$.
4.5. $\overline{\bar{x}}=x$.

$$
\begin{aligned}
& \overline{\bar{x}}=\overline{\bar{x}} x=\overline{\bar{x}} x+x \bar{x}=x \overline{\bar{x}}+x \bar{x}=x(\overline{\bar{x}}+\bar{x})=x(\bar{x}+\overline{\bar{x}})=x \quad\left(4.3,4.1, N_{8},\right. \\
& \left.N_{1}, 4.4, N_{2}\right) .
\end{aligned}
$$

4.6. $y \bar{y}+x=x$.
$y \bar{y}+x=x \bar{x}+x x=x(\bar{x}+x)=x(x+\bar{x})=x\left(N_{8}-N_{5}, N_{1}, 4.4, N_{2}\right)$.
$\mathbf{C} N_{1}$. Independence-Model of N_{1} in \mathbf{C}.

+	0	1	a	b
0	0	1	a	b
1	1	1	1	1
a	a	1	1	1
b	b	1	1	1

.	0	1	a	b
0	0	0	0	0
1	0	1	a	b
a	0	a	a	0
b	0	b	0	b

y	\bar{y}
$\mathbf{0}$	1
$\mathbf{1}$	$\mathbf{0}$
a	b
b	a

Note, $a(b+b) \neq a b+a b$.
$\mathbf{C} N_{2}$ is the same as $\mathbf{A} N_{2}$.
$\mathbf{C} N_{3}$ is the same as $\mathbf{A} N_{3}$.
$\mathbf{C} N_{5}$. Independence-Model of N_{5} in \mathbf{C}.

+	0	1	a
0	a	1	0
1	1	0	$\frac{a}{a}$
a	0	a	1

\cdot	0	1	a
0	a	0	1
1	0	1	a
a	1	a	0

y	\bar{y}
0	1
1	0
a	a

Here we have $a \alpha \neq a, 00 \neq 0$.
$\mathbf{C} N_{8}$. Independence-Model of N_{8} in C.

+	0	1
0	0	1
1	1	1

\cdot	0	1
0	0	0
1	0	1

y	\bar{y}
0	1
1	1

Observe that $0 \overline{0} \neq 1 \overline{1}$.
5. The Equational Basis D. This time, we shall derive N_{z} and N_{8} (and hence \mathbf{C}) from \mathbf{D}.
5.1. $x(y+\bar{y})=x$.

$$
x(y+\bar{y})=x(x+\bar{x})=x x+x \bar{x}=x x=x \quad\left(\bar{N}_{8}, N_{1}, \bar{N}_{2}, N_{8}\right) .
$$

The following propositions are derived in exactly the same way as in section 4 (propositions 4.3, 4.4, 4.5):
5.2. $\overline{\bar{x}} x=\overline{\bar{x}}$.
5.3. $\bar{x}+x=x+\bar{x}$.
5.4. $\overline{\bar{x}}=x$.
5.5. $\overline{y \bar{y}}=y+\bar{y}$

$$
\overline{y \bar{y}}=\overline{y \bar{y}}+y \bar{y}=y \bar{y}+y \bar{y}=y+\bar{y}\left(\bar{N}_{2}, 5.3, \bar{N}_{8}\right)
$$

5.6. $x \bar{x}=y \bar{y}\left(5.4,5.5, \bar{N}_{8}, 5.5,5.4\right)$.
$\mathrm{D} N_{1}$ is the same as that of $\mathrm{C} N_{1}$,
$\mathbf{D} \bar{N}_{2}$, the independence-model of \bar{N}_{2} in \mathbf{D}, is the following:

+	0	1
0	0	1
1	0	1

.	0	1
0	0	1
1	1	1

y	\bar{y}
0	1
1	1

Note here that $0+y \bar{y} \neq 0$.
D N_{3} is the same as $\mathbf{A} N_{3}$ and $\mathbf{C N} N_{3}$.
$\mathbf{D} N_{5}$. The independence-model of N_{5} in \mathbf{D} is given by

+	0	1
0	0	1
1	1	1

.	0	1
0	0	0
1	0	0

y	\bar{y}
0	1
1	0

In this case, $11 \neq 1$.
D \bar{N}_{8} in the following:

+	0	1
0	0	0
1	0	1

.	0	1
0	0	1
1	1	1

y	\bar{y}
0	1
1	1

Note, $0+\overline{0} \neq 1+\overline{1}$.
6. The Equational Basis E. It is sufficient to derive N_{2}, and hence \mathbf{B}, in order to show its equational completeness.
6.1. $x \bar{x}=y \bar{y}$.
$x \bar{x}=x \bar{x}+y \bar{y}=y \bar{y}\left(\bar{N}_{2}, \bar{N}_{2}^{+}\right)$.
6.2. $\overline{x+\bar{x}}=x \bar{x}$.
$\overline{x+\bar{x}}=(x+\bar{x})(\overline{x+\bar{x}})=x \bar{x}\left(N_{2}^{\cdot}, 6.1\right)$.
6.3. $x+\bar{x}=y+\bar{y}$.
$x+\bar{x}=\overline{\overline{x+\bar{x}}}=\overline{x \bar{x}}=\overline{y \bar{y}}=\overline{\overline{y+\bar{y}}}=y+\bar{y}\left(N_{6}, 6.2,6.1,6.2, N_{6}\right)$.
6.4. $x x=x$.
$x=\bar{x}=(x+\bar{x}) \bar{x}=x \bar{x}+\bar{x} \bar{x}=x \bar{x}=x x \quad\left(N_{\theta}, N_{2}^{\cdot}, N_{1}^{\cdot}, \bar{N}_{2}, N_{\theta}\right)$.
6.5. $\quad x(y+\bar{y})=x$.

$$
x(y+\bar{y})=x(x+\bar{x})=x x+x \bar{x}=x x=x\left(6.3, N_{1}, \bar{N}_{2}, 6.4\right) .
$$

$\mathbf{E} N_{1}$ and $\mathbf{E} N_{1}$ are respectively the same models $\mathbf{B} N_{1}$ and $\mathbf{B} N_{1}$ (by Y. Wooyenaka).
$\mathbf{E} \bar{N}_{2}$ is the same as $\mathbf{A} N_{2}$.
$\mathbf{E} \bar{N}_{2}$ is the following:

+	0	1
0	0	1
1	0	1

.	0	1
0	0	1
1	0	1

y	\bar{y}
0	1
1	0

In this case, $0+0 \overline{0} \neq 0$.
$\mathbf{E} \bar{N}_{2}^{+}$is the same as $\mathbf{B} N_{2}$. In this case, note that $0 \overline{0}+0 \neq 0$.
$\mathbf{E} N_{6}$ is given by the following:

+	0	1
0	0	0
1	0	1

\cdot	0	1
0	0	1
1	0	1

y	\bar{y}
0	1
1	0

Here we have $\overline{\overline{0}} \neq 0$.
7. Concluding Remarks. As we have previously observed [6], every postulate-system for Newman algebras gives rise to a postulatesystem for Boolean algebras when any one of the following equations is added as an additional postulate: $x+x=x, x+y z=(x+y)(x+z)$, $x+x y=x, x(x+y)=x, x+(y+\bar{y})=y+\bar{y},(\bar{y}+y)+y=\bar{y}$. In the cases of $\mathbf{A}, \mathbf{B}, \mathbf{D}$ or \mathbf{E} together with $x+x=x$, it is easy to see that we obtain, in fact, equational bases for Boolean algebras. Similarly, if the equation $(x x) y=x(x y)$ were added to any postulate system for Newman algebras, then a postulate-system for Boolean rings with identity is obtained.

References

[1] Birkhoff, G. D., and G. Birkhoff.: Distributive postulates for systems like Boolean algebras. Trans. Amer. Math. Soc., 60, 3-11 (1946).
[2] Birkhoff, G.: Lattice Theory. Providence: Amer. Math. Soc. (1948).
[3] Newman, M. H. A.: A characterization of Boolean algebras and rings. Jour. London Math. Soc., 16, 256-272 (1941).
[4] -: Axioms for algebras of Boolean type. Jour. London Math. Soc., 19, 28-31 (1944).
[5] Sioson, F. M.: Equational bases of Boolean algebras. Jour. of Symbolic Logic, 28, 1-10 (1963).
[6] -: "Natural equational bases for Newman and Boolean algebras," to appear in the Compositio Mathematica.
[7] Wooyenaka, Y.: On postulate-sets for Newman algebra and Boolean algebra. Porc. Japan Acad., 40, 76-81 (1964).
[8] -: On postulate-sets for Newman algebra and Boolean algebra II. Proc. Japan Acad., 40, 82-87 (1964).

