28. Subsemigroups of Completely O-Simple Semigroups, I^{*)}

By T. TAMURA and J. L. CHRISLOCK University of California, Davis, Calif., U.S.A. (Comm. by Kinjirô KUNUGI, M.J.A., Feb. 12, 1965)

1. Introduction. A completely 0-simple semigroup S is isomorphic to a regular Rees matrix semigroup over a group with zero $G^0 = G \cup \{0\}$ with sandwich matrix $P = (p_{ji})$, $p_{ji} \in G^0$, $i \in L_0$, $j \in M_0$ where each row and each column of P contains at least one non-zero element [1, 2, 3]. That is to say,

 $S = \{0\} \cup \{(x; i, j) \mid x \in G, i \in L_0, j \in M_0\}$ where the multiplication is defined as follows: 0 + (x; i, j) = (x; i, j) = 0 = 0 = 0 for all (x)

$$0 \cdot (x; i, j) = (x; i, j) \cdot 0 = 0 \cdot 0 = 0$$
 for all $(x; i, j)$
 $(x; i, j) \cdot (y; k, l) = \begin{cases} 0 & \text{if } p_{jk} = 0, \\ (xp_{jk}y; i, l) & \text{if } p_{jk} \neq 0. \end{cases}$

G is called the structure group of S.

It is known that any subsemigroup of a finite complete 0-simple semigroup S is completely 0-simple if P contains no zero [1, Ex. 19, p. 85]. This is not true for the general case without assumption of finiteness. Actually the type of subsemigroups of completely 0-simple semigroups is the generalization of completely 0-simple semigroups. The purpose of this series of the papers is to determine all subsemigroups of completely 0-simple semigroups. However, as the first step towards this study, the present paper treats 0-simple subsemigroups of completely 0-simple semigroups in the special case where G° is finite. In such a case, any subsemigroup of S is completely 0-simple, or simple, if P contains no zero; any 0-simple subsemigroup of S is completely 0-simple if P contains zero. Also we discuss how to construct such subsemigroups in a given S. We remark that the discussions in the case where P contains no zero includes those in the case where S is completely simple [1, 2] since, if S is a completely simple semigroup and if S^0 denotes a completely 0-simple semigroup such that $S^0 = S \cup \{0\}$, then any subsemigroup of S^0 containing 0 is a subsemigroup of S with 0 adjoined.

The detailed proof will be published elsewhere.

2. Support. We start with subsemigroups of a completely 0simple semigroup R in which the structure group G of R is the

^{*)} The first author presented this result in part at the Meeting of the Mathematical Society of Japan, in May, 1955; the second author delivered the whole paper in the Reno-Meeting of the American Mathematical Society in April, 1964.

identity 1 alone, i.e., the case where the elements of the sandwich matrix P are either 1 or 0. R is characterized as follows: Let $R=\{0\}\cup R'$ where $R'=\{(i,j) \mid i \in L_0, j \in M_0\}=L_0 \times M_0$. Let \varDelta denote a subset of the set $M_0 \times L_0$ satisfying the following condition: for each $i \in L_0$ there is at least one $j \in M_0$ such that $(j,i) \in \varDelta$; for each $j \in M_0$ there is at least one $i \in L_0$ such that $(j,i) \in \varDelta$. Define a binary operation on R as follows:

$$\begin{array}{ll} 0 \cdot (i,j) = (i,j) \cdot 0 = 0 \cdot 0 = 0 & \text{for all } (i,j) \\ (i,j) \cdot (k,l) = \begin{cases} 0 & \text{if } (j,k) \notin \mathcal{A} \\ (i,l) & \text{if } (j,k) \in \mathcal{A} \end{cases}$$

Let V be a subsemigroup of R, and let $\Gamma = V \cap \Delta^{-1}$ where $\Delta^{-1} = \{(i, j) \mid (j, i) \in \Delta\}$. If Γ is empty, then V is a nullsemigroup [1]. We may assume $\Gamma \neq \phi$. Now we define an equivalence relation $\overline{\rho}$ on Γ by the transitive closure of a relation ρ on Γ :

$$(i,j)
ho(k,l)$$
 if and only if $i\!=\!k$ or $j\!=\!l.$

Thus Γ is divided into equivalence classes modulo $\bar{\rho}$:

$$\Gamma = \bigcup_{\alpha \in J} \Gamma_{\alpha}$$

Further define

$$egin{array}{lll} L_{lpha}{=}\{i\,|\,(i,\,j){\,\in\,}\Gamma_{lpha} & ext{for some } j{\,\in\,}M_{\scriptscriptstyle 0}\}, & L{=}{\,\bigcup_{lpha{\in\,}J}L_{lpha}}, \ M_{lpha}{=}\{j\,|\,(i,\,j){\,\in\,}\Gamma_{lpha} & ext{for some } i{\,\in\,}L_{\scriptscriptstyle 0}\}, & M{=}{\,\bigcup_{lpha{\in\,}J}M_{lpha}}. \end{array}$$

Lemma 1. Let V be a subsemigroup of R. Then we have (1) $L_{\alpha} \times M_{\alpha} \subseteq V$ for all $\alpha \in J$.

(2) $(L_{\alpha} \times M_{\beta}) \cap V \neq \phi, \ \alpha, \beta \in J, \ implies \ L_{\alpha} \times M_{\beta} \subseteq V.$

Lemma 2. If V is a 0-simple subsemigroup of R, then $V \subseteq (L \times M) \cup \{0\}.$

With using these lemmas, we have

Theorem 1. If $\Delta^{-1}=R'$, then V is a subsemigroup of R which contains 0 if and only if $V=\{0\}\cup(L\times M)$. If $\Delta^{-1}\neq R'$, then a subsemigroup V of R is 0-simple if and only if $V=\{0\}\cup(L\times M)$.

The semigroup R is closely related to a general case as follows: Let S be a completely 0-simple semigroup over finite G^0 with sandwich matrix $P=(p_{ji}), j \in M_0, i \in L_0$; let $R=\{0\} \cup (L_0 \times M_0)$.

Define a binary operation on R by

$$0 \cdot x = x \cdot 0 = 0$$

$$(i, j) \cdot (k, l) = \begin{cases} 0 & \text{if } p_{jk} = 0 \\ (i, l) & \text{if } p_{jk} \neq 0. \end{cases}$$

Then R is a homomorphic image of S under the mapping φ :

$$0\varphi = 0$$
, $(z; i, j)\varphi = (i, j)$.

Definition. Let T be a subsemigroup of S containing 0. The restriction $T\varphi$ of φ to T is called the support of T. If there are two subsets L and M of L_0 and M_0 respectively such that $T\varphi =$

 $\{0\} \cup (L \times M)$, then T is said to have a rectangular support.

3. Subsemigroups of S. In the consequence of Theorem 1, we can say that if T is a 0-simple subsemigroup of S then T has a rectangular support. We shall derive the converse of this statement. For this purpose, some preparation is needed.

Let S be a completely 0-simple semigroup over finite G^0 , and T a subsemigroup of S. Define several notations:

 $S_{ij} = \{(x; i, j) \mid x \in G\}, \text{ and hence } S = \{0\} \cup (\bigcup_{i \in I_0, j \in M_0} S_{ij})$

 $egin{aligned} T_{ij} &= T \cap S_{ij} \ \Gamma &= \{(i,j) \mid p_{ji}
eq 0, ext{ and } T_{ij}
eq \phi \} \ L &= \{i \mid (i,j) \in \Gamma, \ T_{ij}
eq \phi ext{ for some } j \in M_0\} \ M &= \{j \mid (i,j) \in \Gamma, \ T_{ij}
eq \phi ext{ for some } i \in L_0\} \ G_{ij} &= \{x \mid (x; \ i, j) \in T_{ij}\} \end{aligned}$

Lemma 2. Let $(i, j) \in \Gamma$. If T is a subsemigroup of S then $G_{ij}p_{ji}$ and $p_{ji}G_{ij}$ are isomorphic onto the subsemigroup T_{ij} . If G is finite, then they are subgroups of G, and $G_{ij}p_{ji}=G_{ik}p_{ki}$ and $p_{ji}G_{ij}=p_{jk}G_{kj}$ for all $(i, j), (i, k), (k, j) \in \Gamma$.

Because of Lemma 2, we define

 $G_{i} = G_{ij}p_{ji}, \quad G_{\cdot j} = p_{ji}G_{ij} \text{ whenever } (i, j) \in \Gamma.$

By Theorem 1 we have the following theorem, generalization of Theorem 1.

Theorem 2. If $\Delta^{-1} = R'$, any subsemigroup with zero T of S over finite G⁰ has a rectangular support. If $\Delta^{-1} \neq R'$, then T is 0-simple if and only if T has a rectangular support.

The following lemma is useful for the arguments later.

Lemma 3. If G is finite and if T is a subsemigroup with 0 of S, then, for each $(i, j) \in L \times M$ with $G_{ij} \neq \phi$, there is an element $a \in G$ such that

$$G_{ij} = aG_{ij} = G_i.a.$$

Let T be a 0-simple subsemigroup with support $\{0\} \cup (L \times M)$. For each $(i, j) \in L \times M$, a matrix $\Pi = (\pi_{ji}), j \in M, i \in L$, is defined as follows:

$$\pi_{ji} = egin{cases} p_{ji} & ext{if} \ p_{ji}
eq 0 \ a_{ji}^{-1} & ext{if} \ p_{ji} = 0 \end{cases}$$

where a_{ji} is one of the elements satisfying $G_{ij} = a_{ji}G_{\cdot j} = G_{i\cdot}a_{ji}$ in Lemma 3. Thus

$$G_{i} = G_{ij}\pi_{ji}, \quad G_{\cdot j} = \pi_{ji}G_{ij}, \quad (i, j) \in L \times M.$$

We have the construction theorem.

Theorem 3. Let S be a completely 0-simple semigroup over finite G⁰, that is, a regular Rees matrix semigroup over finite G⁰ with sandwich $(M_0 \times L_0)$ -matrix (p_{ji}) , $j \in M_0$, $i \in L_0$. To construct a subsemigroup with zero T of S:

130

(1) Choose subsets L and M of L_0 and M_0 respectively such that for any $i \in L$ there is a $p_{ji} \neq 0$, and for any $l \in M$ there is a $p_{lk} \neq 0$.

(2) For each $(i, j) \in L \times M$, π_{ji} is defined to be an element of G such that

$$\pi_{ji} = egin{cases} p_{ji} & if \ p_{ji}
eq 0. \ arbitrary & if \ p_{ji} = 0. \end{cases}$$

(3) For a fixed $j=1 \in M$, there is at least a subgroup G_{\cdot_1} of G satisfying

(4) Let
$$G_{i.} = \pi_{1i}^{-1} G_{\cdot 1} \pi_{1i}^{-1} \in G_{\cdot 1}$$
 for all $i \in L, j \in M$.
 $G_{i.} = \pi_{1i}^{-1} G_{\cdot 1} \pi_{1i}, G_{\cdot j} = \pi_{ji} G_{i.} \pi_{ji}^{-1}, G_{ij} = \pi_{ji}^{-1} G_{\cdot j}.$

(5) $T = \left(\bigcup_{i \in L, j \in M} T_{ij}\right) \cup \{0\}$ where $T_{ij} = \{(x; i, j) \mid x \in G_{ij}\}$.

Then T is a 0-simple subsemigroup of S.

Conversely any 0-simple subsemigroup of S is obtained in this way.

Theorem 4. T is isomorphic with the regular Rees matrix semigroup over $G_{\cdot_1} \cup \{0\}$ with sandwich matrix $(s_{j_i}), i \in L, j \in M$, where s_{j_i} is defined as follows:

$$s_{ji} = \begin{cases} \pi_{11} \pi_{j1}^{-1} \pi_{ji} \pi_{1i}^{-1} & \text{if } p_{ji} \neq 0\\ 0 & \text{if } p_{ji} = 0 \end{cases}$$

References

- [1] A. H. Clifford and G. B. Preston: The algebraic theory of semigroups, 1. Math. Surveys, no. 7. Amer. Math. Soc., Providence, R. I. (1961).
- [2] E. S. Ljapin: Semigroups. Fizmatgiz, Moscow (1960).
- [3] D. Rees: On semigroups. Proc. Cambridge Phil. Soc., 36, 387-400 (1940).