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Let X-(X,, ) be a fixed probability space, i.e. a totally
finite measure space X with a measure p such that /(X)-I. We
consider a sequence of random variables

()(x) (re=l, 2, ...; h_>_2)
on X which are defined by the conditions"

1) Let p,p,...,p be the set of h-th roots of unity. The
functions ()(x) with prime-number indices p assume the values
p(1--< k_ h) with equal probability 1/h and they are (stochastically)
independent.

2) For general m>--1 the functions ()(x) are completely mul-
tiplicative with respect to m, i.e.

for any positive integers i, 3": in particular ()(x)- 1 with probability 1.
Apparently, the functions ()(x) (m-l, 2,.-.) are not independ-

ent.
We write

(n- 2, ...).

Our aim in this note is to prove the following
Theorem. We have for any e >0

1 lim s()(x) =0
n1/2 (log n)1/4+

with probability 1 and for h>__3

( 2 lim 0
n1/2 (log n)+

with probability 1.
According to P. Erdis (Some unsolved problems. Publ. Math. Inst.

Hungar. Acad. Sci., vol. 6 ser. A (1961), pp. 221-254; especially, pp.
251-252), A. Wintner proved that for any e>0 we have

lim --0

with probability 1, and ErdSs himself has improved this result to

lim s(l(x) =0
,- n1/2 (log n)
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for some constant c >0. We do not claim, of course, that the results
stated in our theorem are the best possible of their kind. It may
be conjectured that for every h>__2 we have with probability 1

lim sup Res(x) /
"b

We note that the conjecture for h-2 is due to Erds (cf. the above
cited paper by him).

1. We have

1eYeee (i.e. i bbili 1), ee e-
every positive integer m can be uniquely written in the form
dj with some positive integers d, j, j being h-th power-free. Note
that if m-dj then (x)-() almost everywhere on X. Also,
if we denote by (x) the complex conjugate of (x), then

,()-(())-’=() (n=-’
almost everywhere on X. It is easy to see that the functions f()()
with h-th power-free indices form an orthonormal system in X.

Lemma 1. Let 0<. The we have. .. )(x) dff O((n"-m") log (m+ 1))

+O(n log (n/(m+ l)))+O(n)
Proof. We have

where the sum on the right-hand side is equal to

+<., ,+, say.

mlP,,<,

(n’--m) log (m+ 1) + O(n);

q,.___ , _n_n_nlog n
<g" 3 m+l

-FO(n).

This proves the lemma.
Lemma 2. Suppose h>-3 and let Omn. Then we have

’() @-o().
X m<i,t

Proof. The integral in the lemma equals
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which does not exceed trivially
/h -(/)

#
n +O(n) O(n).

# 1-- (2/h)
We denote by L(X), as usual, the class of measurable functions

f() defined on X such that ]f()s is integrable over X. Also, f()
denotes the function conjugate to f(x): thus, f(x)f(x)-f().

Lemma 3. Le fi() (i=1, 2, be a sequence of real or
complex valued functions belonging o $he class Ls(X) and satisfy-
ing $he condition

for any indices ij. Then if we define

1 i=l

we have

F()dff A log’ n fi() dff (n > 1)
X X i=I

wih some absolute consan$ A>O.
Proof. Let 2-n2 (rl>. We put c-i for lin,-0

for Ii2, and write for l, Ol,

i=(--l)f--l+l

()= su F ().

Considering the dyadic development of an integer m, 1mn, we
easily find that

F.() M,(),
l=O

and therefore

where

Hence

fzF(x)d# <-(r+ 1)=oIzM(x)d#’

=< (r+ 1) (m) dff.
,Y

Since (r+ l) <= (3/ log 2) log: n (n>__2), our lemma is proved.
2. We are now ready to prove the theorem. First we shall

demonstrate the assertion (1).
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Lemma 4. Put nk=exp k(k-1, 2, ...), where a, 0(a(1, is
a constant. Then if c>(1+)/(2a) we have

lira =0
n(log n)’

almost everywhere on X.
Proof. By Lemma 1 we have

s()(x ] d-O(n log n)
X

so that

" du--O((log

where, by assumption, (1-20)-1. Hence

and the series
8 (2) X

converges almost everywhere on X. The
at once.

Let h- 2 and put again
n- exp kJ (k= 1, 2, ...),

where q, 0<a<l, will be determined in a moment later. Define
G(x)- sup s(i’(x) ..).

Since we have ()(x)(})(x)dO for any indices i, j, Lemma 3 is

applicable to G(x).
We see that n+-n-O(k-n)-o(n),(-n)-O(k:-n)

so that by Lemma 1,

N f(() g--O(’-’ log)+O().
X nk<iNnk+

It now follows from Lemma 3 that

xGi(x)d-O(k-n

log n)+O(n log n).

Hence if c>0 is a constant then

since log n=k+o(1). Choose a=2/3 and suppose c>7/4. Then
(5-2c)a-2=(2-2c)a<-l, and we have

from which we deduee, as in the roof of Lemma , that

result follows from this
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lim G(x) =0
n.(log n)

almost everywhere on X. Applying Lemma 4 with a=2/3, we thus
conclude finally that

lim =0
n(log n)

almost everywhere on X, provided that c>7/4. This proves (1).
The proof of (2) is similar to that of (1), but the argument is

somewhat simpler.
Lemma 5. Suppose h3 and put n-e (k-1,2, ...). Then

if c 1/2 we have

lim ’
almost everywhere on X.

Proofi The result follows easily from Lemma 2.
Now define for k-l, 2,...

H(x)- sup s()(x)--s)(x) ,
where n-[e. It is clear that Lemma 3 is also applicable to H(x).
By Lemmas 2 and 3 we obtain

xH(x)dg-O(n

log n),

and therefore, if e>O is a constant then

xkn(log n)/
Thus, arguing just as before, we find that

lim H(x) =0

almost everywhere on X, if c>3/2. This together with Lemma 5
implies (2).

Our proof of the theorem is now complete.
Remark. It will be clear from the proof that the denominators

in the left-hand side of (1) and (2) may be replaced respectively by
n(log n) (log log n)+

and
n(log n) (log log n)+

for any e>0, without affecting the results.


