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22. A Limit Theorem for Sums of a Certain Kind
of Random Variables

By Saburd UCHIYAMA

Department of Mathematics, Hokkaidé University, Sapporo
(Comm. by Zyoiti SUETUNA M.J.A., Feb. 12, 1965)

Let X=(X, B, ) be a fixed probability space, i.e. a totally
finite measure space X with a measure ¢ such that p#(X)=1. We
consider a sequence of random variables

S"%)(w) (m=1,2,-+; h22)
on X which are defined by the conditions:

1) Let 0,0, *++, 0, be the set of h-th roots of unity. The
functions ¢*(x) with prime-number indices p assume the values
0(1=k=h) with equal probability 1/4 and they are (stochastically)
independent.

2) TFor general m=1 the functions ¢'»'(x) are completely mul-
tiplicative with respect to m, i.e.

P B (@)= P (x)p' ()
for any positive integers %, j: in particular ¢'*'(#)=1 with probability 1.

Apparently, the functions ¢®'(x) (m=1, 2, --+) are not independ-
ent,

We write

sW(@)=l @)  (n=1,2, ).
m=1
Our aim in this note is to prove the following
Theorem. We have for any >0
im__89(@)
(1) lim — 5»3%)
no p} (log n)t+e
with probability 1 and for h=3
(2) lim__ SW@)
n= n# (log m)F+

with probability 1.

According to P. Erdos (Some unsolved problems. Publ. Math. Inst.
Hungar. Acad. Seci., vol. 6 ser. A (1961), pp. 221-254; especially, pp.
251-252), A. Wintner proved that for any >0 we have

lim _5%(®) _g
n—r00 n&"“
with probability 1, and Erdos himself has improved this result to
sP(@)  _
ne q3 (log n)°
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for some constant ¢>0. We do not claim, of course, that the results
stated in our theorem are the best possible of their kind. It may
be conjectured that for every h=2 we have with probability 1
(h)
lim sup M =+ o0,
n

n—oce 12

‘We note that the conjecture for =2 is due to Erdos (cf. the above
cited paper by him).
1. We have

sw@=3"[(+)" v

almost everywhere on X (i.e. with probability 1), where the summa-
tion 3™ is extended over h-th power-free integers only: an integer
J is said to be h-th power-free if d"|j, d >0, implies d=1. For,
every positive integer m can be uniquely written in the form m=
d"j with some positive integers d, j, j being h-th power-free. Note
that if m=d"j then ¢®(x)=¢¥(x) almost everywhere on X. Also,
if we denote by ¢,(x) the complex conjugate of ¢,(x), then
PR@)=(PW (@) '=¢W(®)  (n=m )
almost everywhere on X. It is easy to see that the functions ¢"(x)
with h-th power-free indices 5 form an orthonormal system in X.
Lemma 1. Let 0=m<mn. Then we have

S x m<Ei§n PP(x) l zd#: O((n'*—m'*) log (m+1))
+0(n log (n/(m+1)))+0(n)  (n>1).
Proof. We have

I el e=g ()LD

where the sum on the right-hand side is equal to

ST Y )T =5em s

Now

13 palf2 2
I (”——”'-’—+1)
ism

j1/2
= (W —m) log (m+1)+O(n);

Shs S Z=nlog —"_+0(n).
mjzn j m+1

This proves the lemma.
Lemma 2. Suppose h=38 and let 0=m<n. Then we have

I.|.2. ov@)| ap=00).

m<isn
Proof. The integral in the lemma equals
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which does not exceed trivially
n** — gp2lh ' O(n™=0
2 (2/h) +0m)=0n).

We denote by LX), as usual, the class of measurable functions
f(x) defined on X such that | f(x)|* is integrable over X. Also, f(x)
denotes the function conjugate to f(x): thus, f(x)f(x)=|f(x) .

Lemma 3. Let fi(x) (¢=1,2,--::) be a sequence of real or
complex valued functions belonging to the class L¥(X) and satisfy-
wng the condition

Re | A@7Fi@dpz0
for any indices 1#j. Then if we define
F,(@)= sup |31/(),

smsn |i=

we have
[ Fiwdpsatogn | [Sii@[ae  @>1)

with some absolute constant A>0.
Proof. Let 2'<n=2" (r=1). We put ¢;=1 for 1=i<mn, =0
for n+1=<4<2", and write for [, 017,

Fi (x)—‘ i s cf(x)‘ (1=sk=2Y,
_1)2'/‘—
M(x)= sup F,().
1=kl

Considering the dyadic development of an integer m,l=m=n, we
easily find that

F ()3 Mi@),
and therefore
S Fﬁ(w)dpé(rﬂ)ég M¥z)dg,
X I1=0JX

where
al
[ Mi@ns3| Fri@a
X k=1JX
gS dp.
X |i=
Hence

[, Frouse+17] |3 5@ )| de.

Since (r+17*=(3/log 2)*log’n (n=2), our lemma is proved.
2. We are now ready to prove the theorem. First we shall
demonstrate the assertion (1).



102 S. UcHIYAMA [Vol. 41,

Lemma 4. Put n,=[expk®](k=1,2, +-+), where a, 0<a<1, is
a constant. Then if ¢>(l+a)/(2a) we have
Sm(®)
i{f}} n'2(log n,)°
almost everywhere on X.
Proof. By Lemma 1 we have

[, 18 dp=0(n. log my),
so that
353,1(93) 2 1—20Y @ (1—2c)
| ooy 4= 0log my=)=0(k==),
where, by assumption, @(1—2¢)<—1. Hence

B Grogmr) <

converges almost everywhere on X. The result follows from this
at once.
Let h=2 and put again
n,=[exp k*] (k=1,2, --*),
where «, 0<a<1, will be determined in a moment later. Define
Gux)= sup [sP(x)—si(x)|  (k=1,2,---).

)
k
np<nEnf41

and the series

Since we have |¢?(x)p@(x)du=0 for any indices ¢, j, Lemma 3 is
applicable to G.(z).

We see that n,.,—n, =0 "'n,)=0(n,), (nifi—n'{)=00"""n,),
so that by Lemma 1,

S x > () ( de =0(k** *n,;, log n,)+O(n,).

Np<tSNf41
It now follows from Lemma 3 that

g 1 (@)d = O, log® 1)+ O(m, log? 1)
X
Hence if ¢>0 is a constant then
G () 2d = O(5—200-2) L O(Je—200®
Sx<n"_““‘lp(1og ) dn=0 )+ O(k-2),

since log n,=k*+0(1). Choose a=2/3 and suppose ¢>7/4. Then
(5—2¢)a—2=(2—2¢)a< —1, and we have

> G(x) Y

k2=1 Sx(nlff (log /n,k)") dp< oo,
from which we deduce, as in the proof of Lemma 4, that
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Gu®)  _
ke ' (log 7,)°
almost everywhere on X. Applying Lemma 4 with a«=2/3, we thus
conclude finally that
s% (@)
ne n%(log m)°
almost everywhere on X, provided that ¢>7/4. This proves (1).
The proof of (2) is similar to that of (1), but the argument is
somewhat simpler.
Lemma 5. Suppose h=3 and put n,=[e*] (k=1,2, -++). Then
if ¢>1/2 we have

; s(x)
ke N} (log 1,)°
almost everywhere on X.
Proof. The result follows easily from Lemma 2.
Now define for k=1,2, ---
Hyx)= sup |sP(x)—s (@),

ng
nE<nEng41
where n,=[¢*]. It is clear that Lemma 3 is also applicable to H,(x).

By Lemmas 2 and 3 we obtain

[, Hit@)dp=00n, log? my),

X

and therefore, if ¢>0 is a constant then

S (i@mydyzo(kz—n),

x\n'{}(log n,)°
Thus, arguing just as before, we find that

Hyx) _
k- 1'f? (log n,)°
almost everywhere on X, if ¢>3/2. This together with Lemma 5
implies (2).
Our proof of the theorem is now complete.

Remark. It will be clear from the proof that the denominators
in the left-hand side of (1) and (2) may be replaced respectively by
n2(log 1) (log log n)¥+

and
n¥(log n)2 (log log n)3+
for any ¢>0, without affecting the results.



