47. On the Convergence Theorem for Star-shaped Sets in Eⁿ ## By Tunehisa HIROSE Department of Mathematics, Defense Academy, Yokosuka, Japan (Comm. by Zyoiti Suetuna, M.J.A., March 12, 1965) Introduction. It is well known, as Blaschke convergence theorem, that a uniformly bounded infinite collection of closed convex sets in a finite dimensional Minkowski space contains a sequence which converges to a non-empty compact convex set. The convergence problem for star-shaped sets seems open up to-day (cf. $\lceil 1 \rceil$). In this paper, modifying F. A. Valentine's proof of the Blaschke convergence theorem in [1], we prove a convergence theorem for star-shaped sets in the n-dimensional euclidean space E^n . In the case of E^3 , Z. A. Melzak's result [2] is known. 1. Notations and lemmas. In the following, we consider sets in the n-dimensional euclidean space E^n only. Let S be a star-shaped set relative to a point p. Then the closure of S, denoted by clS, is a star-shaped set relative to the point p. If $\{S^{\alpha}; \alpha \in \text{index set}\}$ is a finite or an infinite collection of star-shaped sets relative to a point p, then $\bigcup_{\alpha} S^{\alpha}$ and $\bigcap_{\alpha} S^{\alpha}$ are star-shaped relative to the point p. An ε -parallel set A_{ε} of a set A is defined by $$A_{\varepsilon} \equiv \bigcup_{a \in A} K(a, \varepsilon), (0 \leq \varepsilon, \varepsilon \in \text{reals}),$$ where $K(a, \varepsilon)$ denotes the solid sphere with center a and radius ε . The distance between the two points x and y is denoted by d(x, y). Lemma 1. $(A_{\rho})_{\sigma} \subset A_{\rho+\sigma}$. Proof. Let x be a point in $(A_{\rho})_{\sigma}$. Then there is a point $y \in A_{\rho}$ such that $d(x, y) \leq \sigma$. Similarly there is a point $z \in A$ such that $d(y, z) \leq \rho$. Hence we have $$d(x, z) \leq d(x, y) + d(y, z) = \sigma + \rho$$. Therefore x is a point of $A_{\rho+\sigma}$. The distance d(A, B) between the two sets A and B is defined by $$d(A, B) = \inf_{A \subset B_{\rho} \atop B \subset A_{\rho}} \rho.$$ If A and B degenerate to two points x and y, the distance function coincides with the ordinary distance of E^{n} . Lemma 2. A collection of compact sub-sets becomes a metric space with the metric defined above. Proof. i) d(A, A) = 0, ii) $$d(A, B) = d(B, A),$$ and iii) $$d(A, B) > 0$$, if $A \neq B$ are trivial consequences of the definition and the compactness of the sets A and B. To prove iv) $$d(A, C) \le d(A, B) + d(B, C)$$, let $d(A, B) = \rho$, $d(B, C) = \sigma$ and $\rho + \sigma = \tau$. Then $B \subset A_{\rho}$, and by lemma 1, $B_{\sigma} \subset (A_{\rho})_{\sigma} \subset A_{\tau}$. Since $C \subset B_{\sigma}$, we have $C \subset A_{\tau}$. Similarly we have $A \subset C_{\tau}$. Hence $d(A, C) \leq \tau = d(A, B) + d(B, C)$. A family of sets $\mathfrak{M}=\{A^{\alpha}; \alpha \in \text{index set}\}\$ is uniformly bounded if there exists a solid sphere K(O,R) with center at the origin and with radius $R(0 \le R < \infty)$ which contains the entire sets of \mathfrak{M} . Given a set A and a point p, the set $$_{p}A \equiv \{x|^{\exists} y \in A, x = \beta p + \gamma y \text{ for } \beta \geq 0, \gamma \geq 0 \text{ and } \beta + \gamma = 1\}$$ is called the *star extension* of a set A relative to a point p. It is easily seen that, if a set A is compact then $_{p}A$ is also compact. Lemma 3. If a set A is star-shaped relative to a point p, and q be a point such that $d(p, q) < \varepsilon$, then $d(A, {}_{q}A) < \varepsilon$. Proof. By the definition of star extension, $A \subset_q A \subset_q A_{\varepsilon}$. If $x \in {}_q A$, then there is a point $a \in A$ such that $x = \beta q + \gamma a$, $\beta \ge 0$, $\gamma \ge 0$ and $\beta + \gamma = 1$. Let $y = \beta p + \gamma a$. Then $y \in A$, for A is star-shaped relative to p; and $$d(x, y) = ||x-y|| = ||\beta q + \gamma a - ||\beta p - \gamma a||$$ = $\beta ||q-p|| < \beta \cdot \varepsilon \leq \varepsilon$. Hence $d(A, _{q}A) < \varepsilon$. A sequence of sets $\{A^i; i=1, 2, \cdots\}$ is said to converge to a set A if $\lim_{i \to \infty} d(A^i, A) = 0$. ## 2. Convergence Theorem. **Theorem.** Let $\mathfrak{M}=\{S^n; \alpha \in index \ set\}$ be a uniformly bounded infinite collection of compact star-shaped sets in E^n . Then \mathfrak{M} contains a sequence which converges to a non-empty compact star-shaped set. Proof. By the same reasoning of [1] (Th. 3.8), we can prove that there exists a sequence $\{S^n; n=1, 2, \cdots\}$ such that for any $\varepsilon>0$ there is a number N and for any m>N and n>N, we have $d(S^m, S^n)<\varepsilon$. Now each S^n is a star-shaped set, so let p^n be a point relative to which S^n is star-shaped. Since $\{p^n; n=1, 2, \cdots\}$ is contained in the solid sphere K(O, R), which also contains the entire sets of \mathfrak{M} , the infinite sequence $\{p^n\}$ has a convergent sub-sequence $\{p^{n_i}\}$. Let $p^{n_i}=p$. Let us now denote n_i as n. Then we can say by lemma 3 that there exists a sequence $\{(S^n, p^n); n=1, 2, \dots\}$, such that for any $\varepsilon > 0$ we have $$d(p^n, p) < \varepsilon$$ and $d(S^m, S^n) < \varepsilon$ for any $m > N$, $n > N$. (1) Let C^n be the star extension of S^n relative to the point p, then by Lemma 2, Lemma 3 and (1) we have, $$d(C^n, S^n) < \varepsilon$$, for $n > N$, (2) and $$d(C^m, C^n) \le d(C^m, S^m) + d(S^m, S^n) + d(S^n, C^n) < 3\varepsilon$$ for $$m > N$$, $n > N$. (3) Let $B^n \equiv cl(C^n \cup C^{n+1} \cup \cdots) \subset K(O, R)$ and $$S \equiv \stackrel{\circ}{\cap} B^n$$. (4) Since $(C^n \cup C^{n+1} \cup \cdots)$ is star-shaped relative to the point p, B^n is compact and star-shaped relative to the point p. Moreover $B^{n+1} \subset B^n$. Therefore S is a non-empty compact and star-shaped set relative to the point p. The convergence of $\{S^n\}$ to the limit S is proved similar to [1], on account of (1), (3), and (4). Let S_{ε} and C_{ε}^n be the ε -parallel sets of S and of C^n respectively (where $d(S_{\varepsilon}, S) = \varepsilon$ and $d(C_{\varepsilon}^n, C^n) = \varepsilon$). Given any $\varepsilon > 0$, there is a number N' such that for any n > N' we have $B^n \subset S_{\varepsilon}$. For if not so, $B^n \cap \partial(S_{\varepsilon}) \neq \phi^{*}$ for infinitely many n > N', and B^n 's are compact and $B^{n+1} \subset B^n$. Therefore we have $S \cap \partial(S_{\varepsilon}) \neq \phi$, which is a contradiction. Hence $$C^n \subset B^n \subset S_{\varepsilon} \subset S_{3\varepsilon} \text{ for } n > N'.$$ (5) The condition (3) implies $C^n \subset C_{3\varepsilon}^n$ for m > N, n > N, and by (3) and definition of B^n we have $B^n \subset C_{3\varepsilon}^n$ for n > N. Hence $$S \subset B^n \subset C_3^n \text{ for } n > N.$$ (6) Therefore by (5) and (6) $$d(S, C^n) < 3\varepsilon \text{ for } n > \max(N, N'). \tag{7}$$ By Lemma 2, (2) and (7), we have $$d(S^{n}, S) \leq d(S^{n}, C^{n}) + d(S, C^{n}) < 4\varepsilon$$. Hence we have proved that $\lim_{n\to\infty} S^n = S$. This completes the proof. ## References - [1] F. A. Valentine: Convex sets. Mcgraw-Hill (1964). - [2] Z. A. Melzak: A class of star-shaped bodies. Can. Math. Bull., 2, 175-180 (1959). ^{*)} ∂ denotes "the boundary of". ϕ denotes the empty set.