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Introduction. It is well known, as Blaschke convergence
theorem, that a uniformly bounded infinite collection of closed convex
sets in a finite dimensional Minkowski space contains a sequence
which converges to a non-empty compact convex set. The conver-
gence problem for star-shaped sets seems open up to-day (ef. [17]).

In this paper, modifying F. A. Valentine’s proof of the Blaschke
convergence theorem in [1], we prove a convergence theorem for
star-shaped sets in the m-dimensional euclidean space E*. In the
case of E® Z. A. Melzak’s result [2] is known.

1. Notations and lemmmas. In the following, we consider sets
in the n-dimensional euclidean space E™ only.

Let S be a star-shaped set relative to a point p. Then the
closure of S, denoted by ¢lS, is a star-shaped set relative to the point
p. If {S% aecindex set} is a finite or an infinite collection of star-
shaped sets relative to a point p, then UUS® and N S® are star-shaped
relative to the point p. ) )

An e-parallel set A, of a set A is defined by

A= UK(a, ), (0=e, e€ reals),

where K(a, €) denotes the solid sphere with center a and radius e.
The distance between the two points ¢ and ¥ is denoted by d(x, y).

Lemma 1. (A,):CA4p+o.

Proof. Let ® be a point in (4,),. Then there is a point y€ 4,
such that d(x, y)<o. Similarly there is a point z€ A such that
d(y, 2)=<p. Hence we have

d(x, 2)=d(z, y)+d(y, 2)=0+p.
Therefore « is a point of A,ic.

The distance d(A, B) between the two sets A and B is defined

by

If A and B degenerate to two points x and y, the distance function
coincides with the ordinary distance of E".

Lemma 2. A collection of compact sub-sets becomes a metric
space with the metric defined above.
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Proof. i) d(4, A)=0,

ii) d(4, B)=d(B, 4),
and iii) d(A4, B)>0, if AxB
are trivial consequences of the definition and the compactness of the
sets A and B. To prove

iv) d(4, C)=d(A, B)+d(B, C),
let d(A, B)=p, d(B, C)=0 and p+0=7. Then BCA,, and by lemma
1, B,C(4,).CA,. Since CCB,, we have CCA,. Similarly we have
AcCC,. Hence d(4, C)st=d(A, B)+d(B, C).

A family of sets M={A4% «a € index set} is uniformly bounded if
there exists a solid sphere K(O, R) with center at the origin and
with radius R(0SR< ) which contains the entire sets of .

Given a set A and a point p, the set

A={xPyc A, x=Bp+vy for =0, v=0 and B+v=1}
is called the star extemsion of a set A relative to a point p. It is
easily seen that, if a set A is compact then ,A4 is also compact.

Lemma 3. If a set A is star-shaped relative to a point p, and
q be a point such that d(p, q)<e, then d(4, ,A)<e.

Proof. By the definition of star extension, Ac,AC,A.. If
x € ,A, then there is a point a € A such that x=8q+va, =0, v=0
and B+7v=1. Let y=pBp+va. Then yc A, for A is star-shaped
relative to p; and

d(x, y)=|z—y ||=IBg+va—||Bp—"all
=Bllg—pl < B-e=e.
Hence d(A, ,A)<e.

A sequence of sets {4%; 1=1, 2, ---}is said to converge to a set

A if lim d(A*, A)=0.

21‘ Convergence Theorem.

Theorem. Let M={S% «acindex set} be a uniformly bounded
wnfinite collection of compact star-shaped sets in E". Then N
contains a sequence which converges to a mnon-empty compact star-
shaped set.

Proof. By the same reasoning of [1] (Th. 3.8), we can prove
that there exists a sequence {S"; »=1, 2, --:} such that for any
€¢>0 there is a number N and for any m>N and n>N, we have
a(S™, S*)<e.

Now each S" is a star-shaped set, so let p” be a point relative
to which S" is star-shaped. Since {p"; n=1, 2, --+} is contained in
the solid sphere K(O, R), which also contains the entire sets of I,
the infinite sequence {p"} has a convergent sub-cequence {p™}. Let
lim p™=mp.

Let us now denote n;, as n. Then we can say by lemma 3 that



No. 3 Convergence Theorem for Star-shaped Sets in E» 211

there exists a sequence {(S", »"); n=1, 2, -}, such that for any
€>0 we have
d(p", p)<e and d(S™, S*)<e for any m >N, n>N. (1)
Let C™ be the star extension of S" relative to the point p, then
by Lemma 2, Lemma 3 and (1) we have,

d(Cr, S"<e, for n>N, (2)
and a(cm, Cy=d(C™, S™)+d(S™, S")+d(S", C*)< 3¢,
for m>N, n>N. (3)
Let B*=cl(C*UC""'U---)CK(O, R)
and S=NB" (4)

Since (C"UC"*J--+) "isl star-shaped relative to the point p, B"
is compact and star-shaped relative to the point p. Moreover B"+'C
B*. Therefore S is a non-empty compact and star-shaped set relative
to the point p.

The convergence of {S"} to the limit S is proved similar to [1],
on account of (1), (3), and (4). Let S. and C? be the ¢-parallel sets
of S and of C" respectively (where d(S., S)=¢ and d(C?, C")=¢).
Given any ¢>0, there is a number N’ such that for any n >N’ we
have B*CS.. For if not so, B"N8(S.)#¢* for infinitely many n>
N’, and B"’s are compact and B""'CB". Therefore we have SN
0(S.)+#¢, which is a contradiction. Hence

C*cB"cS.CS,. for n>N". (5)

The condition (3) implies C*CC% for m>N, n>N, and by (3)

and definition of B" we have B"CCr for n>N. Hence

ScB*cCy for n>N. (6)
Therefore by (5) and (6)
d(S, C*)<8e for n>max (N, N'). (7

By Lemma 2, (2) and (7), we have
d(S*, S)=d(S", C")+d(S, C")< 4e.
Hence we have proved that lim S"=S. This completes the proof.

n—ro0
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*) 9 denotes ‘‘the boundary of’’. ¢ denotes the empty set.



