47. On the Convergence Theorem for Star-shaped Sets in Eⁿ

By Tunehisa HIROSE

Department of Mathematics, Defense Academy, Yokosuka, Japan (Comm. by Zyoiti Suetuna, M.J.A., March 12, 1965)

Introduction. It is well known, as Blaschke convergence theorem, that a uniformly bounded infinite collection of closed convex sets in a finite dimensional Minkowski space contains a sequence which converges to a non-empty compact convex set. The convergence problem for star-shaped sets seems open up to-day (cf. $\lceil 1 \rceil$).

In this paper, modifying F. A. Valentine's proof of the Blaschke convergence theorem in [1], we prove a convergence theorem for star-shaped sets in the n-dimensional euclidean space E^n . In the case of E^3 , Z. A. Melzak's result [2] is known.

1. Notations and lemmas. In the following, we consider sets in the n-dimensional euclidean space E^n only.

Let S be a star-shaped set relative to a point p. Then the closure of S, denoted by clS, is a star-shaped set relative to the point p. If $\{S^{\alpha}; \alpha \in \text{index set}\}$ is a finite or an infinite collection of star-shaped sets relative to a point p, then $\bigcup_{\alpha} S^{\alpha}$ and $\bigcap_{\alpha} S^{\alpha}$ are star-shaped relative to the point p.

An ε -parallel set A_{ε} of a set A is defined by

$$A_{\varepsilon} \equiv \bigcup_{a \in A} K(a, \varepsilon), (0 \leq \varepsilon, \varepsilon \in \text{reals}),$$

where $K(a, \varepsilon)$ denotes the solid sphere with center a and radius ε . The distance between the two points x and y is denoted by d(x, y).

Lemma 1. $(A_{\rho})_{\sigma} \subset A_{\rho+\sigma}$.

Proof. Let x be a point in $(A_{\rho})_{\sigma}$. Then there is a point $y \in A_{\rho}$ such that $d(x, y) \leq \sigma$. Similarly there is a point $z \in A$ such that $d(y, z) \leq \rho$. Hence we have

$$d(x, z) \leq d(x, y) + d(y, z) = \sigma + \rho$$
.

Therefore x is a point of $A_{\rho+\sigma}$.

The distance d(A, B) between the two sets A and B is defined by

$$d(A, B) = \inf_{A \subset B_{\rho} \atop B \subset A_{\rho}} \rho.$$

If A and B degenerate to two points x and y, the distance function coincides with the ordinary distance of E^{n} .

Lemma 2. A collection of compact sub-sets becomes a metric space with the metric defined above.

Proof. i) d(A, A) = 0,

ii)
$$d(A, B) = d(B, A),$$

and

iii)
$$d(A, B) > 0$$
, if $A \neq B$

are trivial consequences of the definition and the compactness of the sets A and B. To prove

iv)
$$d(A, C) \le d(A, B) + d(B, C)$$
,

let $d(A, B) = \rho$, $d(B, C) = \sigma$ and $\rho + \sigma = \tau$. Then $B \subset A_{\rho}$, and by lemma 1, $B_{\sigma} \subset (A_{\rho})_{\sigma} \subset A_{\tau}$. Since $C \subset B_{\sigma}$, we have $C \subset A_{\tau}$. Similarly we have $A \subset C_{\tau}$. Hence $d(A, C) \leq \tau = d(A, B) + d(B, C)$.

A family of sets $\mathfrak{M}=\{A^{\alpha}; \alpha \in \text{index set}\}\$ is uniformly bounded if there exists a solid sphere K(O,R) with center at the origin and with radius $R(0 \le R < \infty)$ which contains the entire sets of \mathfrak{M} .

Given a set A and a point p, the set

$$_{p}A \equiv \{x|^{\exists} y \in A, x = \beta p + \gamma y \text{ for } \beta \geq 0, \gamma \geq 0 \text{ and } \beta + \gamma = 1\}$$
 is called the *star extension* of a set A relative to a point p. It is easily seen that, if a set A is compact then $_{p}A$ is also compact.

Lemma 3. If a set A is star-shaped relative to a point p, and q be a point such that $d(p, q) < \varepsilon$, then $d(A, {}_{q}A) < \varepsilon$.

Proof. By the definition of star extension, $A \subset_q A \subset_q A_{\varepsilon}$. If $x \in {}_q A$, then there is a point $a \in A$ such that $x = \beta q + \gamma a$, $\beta \ge 0$, $\gamma \ge 0$ and $\beta + \gamma = 1$. Let $y = \beta p + \gamma a$. Then $y \in A$, for A is star-shaped relative to p; and

$$d(x, y) = ||x-y|| = ||\beta q + \gamma a - ||\beta p - \gamma a||$$

= $\beta ||q-p|| < \beta \cdot \varepsilon \leq \varepsilon$.

Hence $d(A, _{q}A) < \varepsilon$.

A sequence of sets $\{A^i; i=1, 2, \cdots\}$ is said to converge to a set A if $\lim_{i \to \infty} d(A^i, A) = 0$.

2. Convergence Theorem.

Theorem. Let $\mathfrak{M}=\{S^n; \alpha \in index \ set\}$ be a uniformly bounded infinite collection of compact star-shaped sets in E^n . Then \mathfrak{M} contains a sequence which converges to a non-empty compact star-shaped set.

Proof. By the same reasoning of [1] (Th. 3.8), we can prove that there exists a sequence $\{S^n; n=1, 2, \cdots\}$ such that for any $\varepsilon>0$ there is a number N and for any m>N and n>N, we have $d(S^m, S^n)<\varepsilon$.

Now each S^n is a star-shaped set, so let p^n be a point relative to which S^n is star-shaped. Since $\{p^n; n=1, 2, \cdots\}$ is contained in the solid sphere K(O, R), which also contains the entire sets of \mathfrak{M} , the infinite sequence $\{p^n\}$ has a convergent sub-sequence $\{p^{n_i}\}$. Let $p^{n_i}=p$.

Let us now denote n_i as n. Then we can say by lemma 3 that

there exists a sequence $\{(S^n, p^n); n=1, 2, \dots\}$, such that for any $\varepsilon > 0$ we have

$$d(p^n, p) < \varepsilon$$
 and $d(S^m, S^n) < \varepsilon$ for any $m > N$, $n > N$. (1)

Let C^n be the star extension of S^n relative to the point p, then by Lemma 2, Lemma 3 and (1) we have,

$$d(C^n, S^n) < \varepsilon$$
, for $n > N$, (2)

and

$$d(C^m, C^n) \le d(C^m, S^m) + d(S^m, S^n) + d(S^n, C^n) < 3\varepsilon$$

for
$$m > N$$
, $n > N$. (3)

Let $B^n \equiv cl(C^n \cup C^{n+1} \cup \cdots) \subset K(O, R)$

and
$$S \equiv \stackrel{\circ}{\cap} B^n$$
. (4)

Since $(C^n \cup C^{n+1} \cup \cdots)$ is star-shaped relative to the point p, B^n is compact and star-shaped relative to the point p. Moreover $B^{n+1} \subset B^n$. Therefore S is a non-empty compact and star-shaped set relative to the point p.

The convergence of $\{S^n\}$ to the limit S is proved similar to [1], on account of (1), (3), and (4). Let S_{ε} and C_{ε}^n be the ε -parallel sets of S and of C^n respectively (where $d(S_{\varepsilon}, S) = \varepsilon$ and $d(C_{\varepsilon}^n, C^n) = \varepsilon$). Given any $\varepsilon > 0$, there is a number N' such that for any n > N' we have $B^n \subset S_{\varepsilon}$. For if not so, $B^n \cap \partial(S_{\varepsilon}) \neq \phi^{*}$ for infinitely many n > N', and B^n 's are compact and $B^{n+1} \subset B^n$. Therefore we have $S \cap \partial(S_{\varepsilon}) \neq \phi$, which is a contradiction. Hence

$$C^n \subset B^n \subset S_{\varepsilon} \subset S_{3\varepsilon} \text{ for } n > N'.$$
 (5)

The condition (3) implies $C^n \subset C_{3\varepsilon}^n$ for m > N, n > N, and by (3) and definition of B^n we have $B^n \subset C_{3\varepsilon}^n$ for n > N. Hence

$$S \subset B^n \subset C_3^n \text{ for } n > N.$$
 (6)

Therefore by (5) and (6)

$$d(S, C^n) < 3\varepsilon \text{ for } n > \max(N, N'). \tag{7}$$

By Lemma 2, (2) and (7), we have

$$d(S^{n}, S) \leq d(S^{n}, C^{n}) + d(S, C^{n}) < 4\varepsilon$$
.

Hence we have proved that $\lim_{n\to\infty} S^n = S$. This completes the proof.

References

- [1] F. A. Valentine: Convex sets. Mcgraw-Hill (1964).
- [2] Z. A. Melzak: A class of star-shaped bodies. Can. Math. Bull., 2, 175-180 (1959).

^{*)} ∂ denotes "the boundary of". ϕ denotes the empty set.