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1. Throughout this note, we shall use the terminology due to
J. Dixmier [2] without further explanations.

Following after H, A. Dye [3], we shall introduce some funda-
mental definitions on automorphisms of an abelian von Neumann
algebra 4 with the faithful normal trace ¢ normalized by ¢#(1)=1.
A projection P in A is said to be absolutely fixed under an auto-
morphism g of A if Q=@ for each Q=P. For the given two auto-
morphisms g and & of A, we shall denote by F'(g, h) the maximal
projection in 4 which is absolutely fixed under gh™.

Let G be a group of ¢-preserving automorphisms of 1 ;

#(A%)=¢(A) for each Ac A and ge@.
If F(g,1)=0 for each g+#1 in G, then G is called freely acting. If
« is an automorphism of 4, we say that a depends on G if
lL.u.b,ee F(@, g9)=1. We shall denote by [G] the collection of all
automorphisms of 4 which preserve ¢ and depend on G. We shall
call [G] the full group determined by G.

In this paper, we shall give a characterization of dependence of
an automorphism with respect to the given group G in terms of the
crossed product of an abelian von Neumann algebra /.

2. At first we shall review briefly the concept of the crossed
product of an abelian von Neumann algebra by an enumerable freely
acting group G of ¢-preservin automorphisms of 4, ef. [1], [4], and
[51.

We shall denote an operator valued function defined on G by
Seee g® A, where A e A is the value of the function at ge G. Let
D be the set of all functions such that A,=0 up to a finite subset
of G. Then 9 is a linear space with the usual operations of the
addition and the scalar multiplication, and becomes a *-algebra by
the following operations :

Cloes @A) Shea B®B1) =30, 1e0 gh@ A,BS

(Srea IR A)*=30ea 9T R A7,
For a trace ¢ in 4, we shall introduce a trace ¢ in 9 by

_[#(4,)  for g=1,
SD(‘0®A")_{O for g1,

and
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and

90(2066' g®Aa)ZZaeG SD(g@Aa)'
Then the restriction of ¢ on A=1®A coincides with ¢ and ¢ is
faithful on 9, ef. [4]. Let 4 be the representation space of 4
by ¢, cf. [2], then G®H, in the sense of H. Umegaki [6], is the
representation space of 9 by ¢, and 9 is represented faithfully on
GRMA.

We define the operators 1® A and U, on GR®H for each Ae S

and g€ G by

1®A(EheGh®Bh)=2heG h/@ ABh
and

U,(Clhee h@By)=>kee gh/@Bg;l,
for any S.ee h®B, € 9, being considered as a dense linear subset of
G®IH. Then U, is a unitary operator and we have

UryAAU,=1R A°.

Hereafter, we shall identify 1® A with A since 4 is isomorphic to
1®A.

The crossed product GRA of A by G (with respect to ¢) is
‘the weak closure of 9 on GRH, being considered 9 as a *-algebra
of operators on G®.J, that is, G®A is the von Neumann algebra
generated by A4 and {U,: g€ G}. Then each element in G®.A has
the form of >,c¢ 4,U,, where A4,¢ .

Now, we shall investigate the interrelation of the dependence
of automorphisms and the crossed product of abelian von Neumann
algebras in the following

THEOREM 1. Let A be an abelian von Neumann algebra with
the faithful normal trace ¢ normalized by ¢(1)=1, G be a freely
acting group of ¢-preserving automorphisms of A and « be an
automorphism of A which depends on G. Then « can be extended
to an imner automorphism of GRA which is induced by a unitary
operator

U 22066 E g Um
where E, satisfies the following properties :

(1) E, is a projection in A for every geG,

(2) E,E,=0 for g+h,

(3) 2lies E,=1,

(4) E, is absolutely fixed under ag™.

Proof. Put

E,=F(a,9) and U=3, E,U,,
then it is clear by the definition of F'(«, g) that E, satisfies the
conditions (1) and (4).
Since G is a freely acting group,
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E,E,=F(a, 9)F(a, h)=0,
that is (2). By the dependence of «,

dee EaZZaeG F(a, g):]-’
which is (3).

By the following direct computations, we can see that U is a
unitary operator in G® A and that U induces an inner automorphism
of G®A which is an extension of «:

U* U=(Egee Eg Ug)*(E;.ea E, Uh):Zg,hea Uy*EgEh U,
:2066 Ug*EaUa:ZaeG Eyw.;l’
vux =(dea Eg Ug)(ZheG E, Uh)* =2g.hee Eg Ug U}E,
:Zﬂ,heﬂ EgE;fw_l gh”‘lZZg,hea (EgEh)M—anh—l
:2969 Ey: 1;
and
U*AU:(E(IGG EyUy)*A(ZhGG EhUh)zzg,heG Ug*EgAEhUh
=>Vea USE AU, =3 (B, A)"= A%,
for each Ae 4. This proves the theorem.

Conversely, we have the following

THEOREM 2. Let A and G be as in Theorem 1. Then a ¢-
preserving automorphism o of A depends on G i+f a can be extended
to an inner automorphism of GRA.

Proof. We suppose that & can be extended to an inner auto-
morphism of G® 4 which is induced by a unitary operator U in
G®A. Then we have

A*=U*AU, for each Ae J,
whence UA*=AU. Set U=,cs 4,U,, then, for any Ae A,
UA*= (Zaee Ay Ua)Aw:‘ZyeG AaA‘w—l Ua
and
AU= AR ee Aa Ug)ZEgGG AAU,.
therefore we have
A A" =AA,,
for each Ae A and g<¢@.

Let E, be the carrier projection of A,. Then, for any character-
% in E, (that is a homomorphism of </ onto the field of all complex
numbers such that x(&,)=1),

X(ANN(A ™) =1(4,477) = x(A4,) =X(A)A(A,),
for each Ae 4, so that we have
X(A*™H=x(A), for each Ae .
Therefore E, is absolutely fixed under ag™, so that E, is dominated
by F(a, g).
Denote E=1.u.b.,e¢ E,=>),c¢ E, and F=1—E. Then
FU=FCec A,U,)=>",ca FA,U,=0,
whence E=1, or lLu.b.,cs F'(«, g)=1. Therefore « depends on G.
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3. We shall call the algebra of all operators of 4 which is
invariant under all ge G the fized algebra of G.
THEOREM 3. Let A and G be as Theorem 1. Then [G] has
the same fized algebra as G.
Proof. Let % be the fixed algebra of G. Then, for each Ac %,
A*=U*AU= Slsea E, Ug)*A(ZheG E,\U,)
=>nee UFEAEU,=3,6¢ UFE,AU,
=>ee (BAY=>,e0 EFA=A.
Therefore the fixed algebra of [G] contains that of G. The converse
implication is obvious. This proves the theorem.
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