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85. Singular Cut.off Process and Lorentz Covariance

By Hideo YAAGATA
(Comm. by Kinjir6 KUNUGI, ..A., My 1, 1)

1. Introduction. Singular cut-off process means to construct
a sort of convolution (by A-integral) with A-integrable function or
limit of them, namely it is to construct the infinite sum (of usual field
functions) which play the same role as the field function suffering the
usual cut-off 4 p 822. At the first step let’s give the exact definition
of it. Let @(x) denote the quantized field function with the form

@(x)-(1/(27r)’){I(a+()/V’2ko ).exp i.-kot)d
(a()/). exp (--i)(.--k0t)d} ( 1 ),+

(k0 k+k+k+m), p() denote the A-integrable function defined
on the nowhere dense perfect set which is equivalent to a smooth
function (by the meaning of distribution), and {p()} denote the some
fixed sequence of the above A-integrable functions with the limit fi()
[a3 p aT.

Suppose that (x)is given by the form (means the infinite sum)

+o(x>-(ll(2z>"’>((a+(>l >. (A>p(’> exp i{(-’>-kot}d’d

+ i(a()/).(A)ip(’)exp(-i){(-2’)-k0$}d’d} 2 ).

Definition 1. The operation constructing (x), (or lira

from @(x) is called singular cut-off process.
The representation of cut-off (by using mollifier) and the above

representations (1), (2) have a sort of ambiguities deduced from the
lack of the exact definition of integral. Here, we use the A inhomo-
geneous Lorentz covariance defined in 4 Def. 3 as Lorentz covariance.
The judgement whether this Lorentz covariance is satisfied or not for
three dimensional cut-off also depends on the interpretation of the
problem related to the exact definition of $ function and being alike
to "arrow’s" paradox by Zenon. This judgement is related to the
contradiction of the interpretation of rigid body in relativity theory
9 p 176. Though A inhomogeneous Lorentz covariance is the
more weak condition than the usual Lorentz covariance, the cut-off
(three dimensional case) by using smooth function’s mollifier exerts
the negative influence even on this. This negative influence is based
on the lack of Haar measure in three dimensional manifold which is
invariant for inhomogeneous Lorentz transform. Since the carrier of



378 H. YAMAGATA [Vol. 41,

fi()={p.()} can be considered as the set of countable infinite points,
it is deduced from the lack of the exact definition of cut-off (related
to integral) that this negative influence is eliminated by using fi() by
the most original interpretation of functions.

If change of the total measure of nowhere dense perfect set by
Lorentz transform is neglected from the regard as the infinite sum
of descrete points, this Lorentz covariance is satisfied even for ,(x).
Our purpose of this article is to give a sort of counter example for the
negative relation (by common sense) between this Lorentz covariance
and cut-off by analyzing these concepts instead of giving the exact
definition of integral needed for quantum field theory.

The materials of this article are arranged as iollows: in 2 we
show the difference among three interpretations of function in
p 58 which is required or the interpretation of the carrier of singular
mollifiers, 3 contains the construction of an example of the singular
sequencial mollifier fi()={p()} used or singular cut-off process (by
using the construction of A-integral representation of distribution),
and in 4 we show the three dimensional singular cut-off process
satisfying the 4 inhomogeneous Lorentz covariance.

2. tunction. P. A. M. Dirac gives the ollowing three
interpretations of function.

iunction is a quantity depending on a parameter x satisfy-

ing the conditions ()d-l, ()-0 for =/:0 [1 p 58.

(ii) unction is one which has the property ((x), (x)}=
+5(x)(x)dx-(O), or continuous (testing) unction (x)any

p 59 [2] I, p 25.
(iii) function is the sequence (or the resemble one)of regular

iunctions [1] p 58 (for example p/(x) by L. Schwartz [2 I, p 22).
Here (ii) is the interpretation by the result deduced from (i), and (iii)
is the concrete construction of type (i)’s function.

Since the meaning of and (0) are not necessarily obvious,

(i) cannot be used as the exact definition but satisfies the 4 inhomo-
geneous Lorentz covariance. L. Schwartz has defined the distribution
(which containes (x)) by giving the rigourous definition ot testing
unction’s space which is alike to the space in (ii), [2 I, p 70. But,
since his (x) is represented by using A-integrable function very
exactly, it is shown that the definition of function by L. Schwartz
suffers the effect by the part x=/=0 which can be also seen rom the
definition of the distribution’s carrier by using testing function, and this
(x) gives the negative effect to 4 inhomogeneous Lorentz covariance

(see 4). As an example of definition (iii), P. A. M. Dirac uses the
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Fjer kernel considered as the fixed sequence 1 p 95. The set of
the sequences can be also considered as the $ function 8 p 329.
But even if any one of these two interpretations of (iii) is used, A
inhomogeneous Lorentz covariance cannot be necessarily satisfied.
However many physicians and mathematicians have a sort of common
sense (not necessarily rigourous) such that the above three definitions
are equivalent.

3. The singular sequencial mollifier. E1 is same as the
nowhere dense perfect set E defined in 4 p 823. Let E denote the
similar restriction of E, The set F is constructed by the arrangement
of the translation of E into all intervals 2, 2v+1(-0, +1, +2, .-.).
Next, the set F is constructed by the arrangement of the translation
of Es in the middle of all the open connected components of F whose
length is larger than 3/2. Iterating the same constructing processes
(countable infinite times) the set F is constructed.

For a decreasing positive number’s sequence {e} tending to zero,
the following subsequence {F,} (of the sequence {F}) can be chosen.
Namely F+-F, is the set which is the join of the disjointed
nowhere dense perfect sets E,, with the following properties; (1)
the distance between two neighbouring sets of the family {E,,; k-
1, 2, K,, n<p<=n+, v-O, _+1, ...} is smaller than e>0 _5 p 76
Lemma 2, (2) the length l(E,,,) of each E,, contained in the above
family satisfies the inequality 8-;>/(E,,)_>-8-’+.

An A-integral representation of distribution is the sum of the
elements of the sequence {fi()}. Here, fi() is the function with
the range of the values {+n} whose carrier a is the subset of

Fi+x-F;, and this function has the same sign in E,, (for the same
p,k,v) 5 p 77.

The following {f)()} representing the same distribution can be
constructed from this sequence {f()}: the values of f)()are +2n,
and the carrier al) of f()(x) is the set U;<+Ux_U,=o,+,...E,,,
where

E; -{ I ndx< i dx/2} 5 p 77.,,, y; y e E,,, a, (-..,,)n,,,,

By using the same method etc., we can construct the sequence of the
sequences [{f()(x)} with the property such that f()(x) (for m
for arbitrary fixed depending on L) have the same sign in the fixed
set E,,, (l<=.p<___L, l<=k<=K, -0, +_1, +_2, ...).

Here n(L)is the monotone increasing integer valued tunction
L depending on the order q (of distribution) and {e}, 5 p 77 [3 p 137.
For example, n(L)-2([1/e + 2)q, where [1/e is the maximum positive
integer smaller than (or equal to)

From the above argument we assert the following
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Theorem 1. Suppose that {f()(x)}-{,?= f)(x)} is the A-inte-
gral representation’s sequence of a fixed distribution. The sequence
{f()(x)} with the following properties can be constructed;

(1) for m>n {Carrier f()(x)}c {Carrier f()(x)},
(2) f {Carrier f()(x)} is the set of countable infinite points,

and lira ,?=f’)(x) can be considered as the countable infinite sum

of -like singularities (of the type (i)).
We can also understand that lim,7=f()(x) has the sequence

{=f() (x)} showing its construction. Namely the singular cut-off
process by using lim?=f)(x) is one by using the sequence

{,?=fi()(x)}. On the other hand, this singular cut-off can be also
defined as the conditional convergent series of the countable infinite
sum of type (i)’s -like singularities in lim ,=f)(x).

4. A inhomogeneous Lorentz covariance. Here we treat
the following Hyperbolic differential equation (3) as the extension of
the equation for fixed point source model with
(x)-- g() [7 p 2; (g--8:/St-lt:)(x)- k(x) 3 ).
Hereafter, let denote the three dimensional vector, and x-(5, t).

Suppose that U(a, A) are the unitary operator defined in the state
vector’s space 10 p 22 (or Von Neumann’s direct product space) and
deduced from the inhomogeneous Lorentz transform (a, A).

Definition 2. If there exists U(a, ) such that the relation
(q, 9(x))= U, Ug(x)) (U(a, A)q, 9(a+ Ax) U(a, A)) holds good for
any state vectors 0 and v, then we say that 9(x) satisfies the Lorentz
covariance 6 p 249 10 p 99.

Definition 3. If (x).p(x)satisfies the Lorentz covariance by the
replacing (p(x)-.p(Ax)), we say that 9(x).p(x) satisfies the A inhomo-
geneous Lorentz covariance.

This Definition 3 shows the Lorentz covariance for the class
{9(x).p(3x); A L}, where L is the homogeneous Lorentz group. This
is a sort of specialized form of Y. Kato’s Lorentz covariance for ((R)’).

Lemma 1. If V(x) satisfies Lorentz covariance, then V(x).p(x)
also satisfies A inhomogeneous Lorentz covariance for usual function
p(x).

Proof. Since

U-(a, A)Ik(x--x’)p(x’)dx’ U(a A)-- I(Ax+a--Ax’)p(x’)dx’

If(Ax+a-4x’)p(x’)d(Ax’) holds valid, this Lemma is concluded.

Furthermore we show the following Lemma without proof.
Lemma 2. If and only if f(x) satisfies the usual Lorentz

covariance, the quantized solution of (3) also satisfies the usual
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Lorentz cova’iance.
(a) Since the unit length of $ is varied everywhere, it can be easily

that the Lorentz covariance is not satisfied for (-’)p(’)d’,seen

where p(’) is the usual function. Namely U-(a, )i(-’, $)p(’)d’ U
(a, A)-- (Ax--A(’, O)+a)p(’)d’. Bythe replacing (p(’)-p(A(’, 0))),
this result becomes to

where d(A(’, 0)) means the three dimensional integral.
(b) If p(’) is the finite sum of -like singularities of type (i)

(defined in 2), U-(a,A)(--5, $)U(a, A)--, (Ax/a--A(, 0))--.
(Ax-a--) for (p(x)--.p(Ax)). Then A inhomogeneous Lorentz
covariance is satisfied. This result is deduced from the assumption
such that type (i)’s function is translated by Lorentz transform.
This assumption is deduced from the property such that the measure
of the (type (i)’s) ()’s carrier is zero truely. The singular cut-off
process (2) by fi-{p} in 3 rather has the property of this finite
sum in itself.

(c) I p(5’) is the unction of type (ii) (A-integral representation),
or the unction o type (iii) (defined in 2), the relation in (a) is
satisfied from the same argument (in (a)).

Hence we assert the following
Theorem 2. Suppose that fi(5’) is the singular sequencial tool-

.lifter (for example, see 3) constructed by using the function of
$ype (i) (see 2). Then, $he A inhomogeneous Lorentz covariance
is satisfied for singular cut-off by using fi(’).

Proof. Since rues {Carrier (fi(5’))} is zero, this measure does not
vary through the Lorentz transform. After the Lorentz transform,
the infinite sum of the functions of type (i)defined on the descrete
points set is also considered as the infinite sum of the translated
unctions with the same properties as one before the Lorentz transform
from the same argument as the above (b). Hence Lorentz covariance
by the meaning of (b) is satisfied.

In Theorem 2 the effective condition to satisfy this Lorentz
covariance (and causality) is that carrier (fi(5’)) is the countable infinite
points. Furthermore, it is effective that all points in this carrier lies
in boundary. If we neglect the variance of the infinitesimal measure
related to each separate point, this Lorentz covariance can be also
satisfied by using A-integrable function itself (defined on the countable
sum of nowhere dense perfect set) as mollifier. This argument cor-
responds to the use of Dini’s derivate for generalized causal set 5 p 74.
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