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96. On Theorems of Korovkin. II

By Ritsuo IAKAMOTO and Masahiro NAKAMURA
Department of Mathematics, Osaka Gakugei University

(Comm. by Kinjir6 KU,NU(I, M..A., June 12, 1965)

1o P. P. Korovkin [2; Th. 3 established, among many others,
the following theorem"

THEOREM 1. Let L, be a positive linear operator which maps
the space C[a, b-J of all functions continuous on the closed interval
[a, b into itself for every n-l, 2, -... If
( 1 lim Lf=f, uniformly,

is satisfied by f(t)-1, t and V, then (1) is true for every fe Ca, b.
Since several concrete operators on C[a, b are positive und linear,

Korovkin’s theorem plays fundamental role in his theory of approxi-
mation; for example, the Bernstein operator

is linear and positive on 0, 1 for every n0.
One of the proofs of Theorem 1 due to Korovkin is based on

the following theorem 2; Th. 1-] on the convergence of positive
linear functionals on C_a, b"

THSOaS 2. If a sequence {q} of positive linear functionals
on C[a, b satisfies
(2)

and

lim #(i)-i,

lim q(h)- 0,

where h(t)-(t-c), a<=cb, then
lim q( f)- f(c),

for all fe Ca, b.
2. A few years ago, Marie and Hisashi Choda proved in 1 an

abstract version of Theorem 2. To introduce their theorem, some
elementary notions on B*-algebras are required, cf. 3.

A commutative Banach algebra A is called a B*-algebra if A
has an involution x--x* which satisfies ][ xx* [[-]1 x II for all x e A.
An element of A is called positive, symbolically a>__0, if there is an
element b e A such as a-bb*. If a transformation L which maps A
into a B*-algebra B is called positive if La>=O for every a>=0. A
character of A is a homomorphism of A onto complex numbers. A
character of A determines uniquely a maximal ideal of A.
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The theorem of M. and H. Choda is as follows:
THEOREM 3. Let A be a commutative B*-algebra with the

identity, M a principal maximal ideal generated by an element a

of A, and the character corresponding to M. If a sequence a
of positive linear functionals of A satisfies (2) and
( a ) lim a([ a ])-0,

then a converges weakly* to Z:
( 4 lim a(x)= Z(x),

for all x A.
Since Ca, b is a B*-algebra with the identity, since (f)-f(c)

determines a maximal ideal M of all continuous functions vanishing
at c, and since M is generated by a(t)--t-c, Theorem 3 implies
Theorem 2.

In the present short note, an abstract formulation of Korovkin’s
Theorem i will be given in a manner corresponding to Theorem 3.

:. An abstract version of Korovkin’s Theorem i is the following
THEOIEM 4. Let A be a commutative B*-algebra with the

identity such that every maximal ideal is principal, and let a, a,
..,a be a set of elements of A which satisfies the following

property" For a given maximal ideal M of A, there exists an
element g of A such that g generates M and g --gg* is expressible
as a linear combination of a, a:,..., a, i.e.,

g a+.a.+ +a
If a sequence L of linear operators satisfies

) L maps A into itself,
(ii) L is positive,
and
(iii) lim La-a, for i--0,1,2, ..., n,

where ao--1, then
5 ) lira La-a,

for all a e A.
When A--Ca, b, then the requirements of the theorem are

satisfied for
g--t--c, a--1, a--t, and a--t.

Hence Theorem 4 implies Theorem l.
4. The proof of Theorem 4 is a verbal version of the second

proof of Theorem i due to Korovkin.
Suppose the contrary that (5)fails for an element a of A. Then

there exists a sequence {) of characters of A for which

where n<n< .... Since a bounded set of the conjugate space of
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a Banach space is sequentially weakly* precompact, (being replaced
by a subsequence if necessary) it can be assumed that Z converges
weakly* to a certain character Z"
7 lim Z(x)--(x),

for all x e A. It will be also assumed that g generates the maximal
ideal M corresponding to X. By (iii), L. converges strongly at h-
]g ] since h is a linear combination of a, a,-.-, a.

Put
( 8 a(x)-(Lx), k-1, 2,
Since L is positive and linear, a is also positive and linear, and (2)
is automatically satisfied by {a} since Lfl converges to 1. Further-
more, (3) is also satisfied by {a}, since Z converges to Z uniformly
on {L,h} by (iii) and (7) so that

lim a(h)- lim z(Lh)-z(h)-O.
Hence a converges weakly* to Z; especially,
9 lim a(a)-(Za).

Now, by (7), (8), and (9),
z(L,a)-Z(a) z(La)-Z(a) + Z(a)-Z(a) <e,

for sufficiently large k, which contradicts to (6). This proves the
theorem.
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