113. On a Theorem of G. Pólya

By Saburô Uchiyama
Department of Mathematics, Hokkaidô University, Sapporo, Japan
(Comm. by Zyoiti Suetuna, m.J.A., Sept. 13, 1965)
Let $a_{n}(n=0,1,2, \cdots)$ be a sequence of algebraic integers. In 1920 G. Pólya [2] proved that if $\sum_{n=0}^{\infty} n a_{n} z^{n}$ is a rational function of z, then so is $\sum_{n=0}^{\infty} \alpha_{n} z^{n}$. This result has recently been generalized by D. G. Cantor [1], who showed that if $f(x)$ is a non-zero polynomial in x with arbitrary complex coefficients and if $\sum_{n=0}^{\infty} f(n) a_{n} z^{n}$ is a rational function, then $\sum_{n=0}^{\infty} a_{n} z^{n}$ is again a rational function. In the present note we shall prove the following theorem which is a generalization of the above result due to Pólya in another direction:

Theorem. Let $a_{n}(n=0,1,2, \cdots)$ be a sequence of numbers belonging to a fixed module over the ring of rational integers with a finite basis in the field of complex numbers. If $\sum_{n=0}^{\infty} n a_{n} z^{n}$ is a rational function, then so is also $\sum_{n=0}^{\infty} a_{n} z^{n}$.

It is quite easy to see that if the a_{n} are algebraic integers and if $\sum_{n=0}^{\infty} n a_{n} z^{n}$ is a rational function, then there exists a finite algebraic extension k of the field of rational numbers such that the ring $\mathrm{o}(k)$ of algebraic integers of k contains all of the a_{n}; and, as is well known, the ring $\mathfrak{o}(k)$ has as a module a finite basis over the ring of rational integers.

1. Lemmas. Let K_{1} be an arbitrary field of characteristic 0 and K_{2} a field containing K_{1}. We require the following two lemmas which are substantially proved in [2; pp. 4-5].

Lemma 1. Let $A(z)$ be a non-zero polynomial of $K_{1}[z]$ and write

$$
A(z)=\left(P_{1}(z)\right)^{e_{1}} \cdots\left(P_{r}(z)\right)^{e_{r}}
$$

where $P_{1}(z), \cdots, P_{r}(z)$ are distinct irreducible polynomials in $K_{1}[z]$ and e_{1}, \cdots, e_{r} are positive integers. If $B(z)$ is a polynomial of $K_{2}[z]$, then we have

$$
\frac{B(z)}{A(z)}=\sum_{j=1}^{r} \frac{B_{j}(z)}{\left(P_{j}(z)\right)^{e_{j}}}
$$

for some polynomials $B_{1}(z), \cdots, B_{r}(z)$ of $K_{2}[z]$.
Proof. Clear.
Lemma 2. Let $P(z)$ be an irreducible polynomial of $K_{1}[z]$ and $Q(z)$ be a polynomial of $K_{2}[z]$. Let e be a positive integer. Then there exist a rational function $\phi(z)$ of $K_{2}(z)$ and a polynomial $R(z)$ of $K_{2}[z]$ with $\operatorname{deg} R(z)<\operatorname{deg} P(z)$ such that

$$
\frac{Q(z)}{(P(z))^{e}}=\frac{d}{d z} \phi(z)+\frac{R(z)}{P(z)} .
$$

Proof. The result is obvious for $e=1$. Suppose that the lemma is true for $e=e$. Since K_{1}, and hence K_{2}, is assumed to be of characteristic $0, P(z)$ and $P^{\prime}(z)$ are relatively prime as polynomials of $K_{2}[z]$ and we can find two polynomials $S(z)$ and $T(z)$ in $K_{2}[z]$ satisfying

$$
S(z) P(z)+T(z) P^{\prime}(z)=Q(z)
$$

Define the polynomials $H(z)$ and $Q_{1}(z)$ of $K_{2}[z]$ by the relations:

$$
T(z)=-e H(z), \quad S(z)=H^{\prime}(z)+Q_{1}(z)
$$

Then we have

$$
Q(z)=\left(H^{\prime}(z)+Q_{1}(z)\right) P(z)-e H(z) P^{\prime}(z),
$$

whence

$$
\frac{Q(z)}{(P(z))^{e+1}}=\frac{d}{d z}\left(\frac{H(z)}{(P(z))^{e}}\right)+\frac{Q_{1}(z)}{(P(z))^{e}} .
$$

Thus the lemma is true for $e=e+1$. Our proof is now complete by induction.
2. Proof of the theorem. We denote by R the field of rational numbers, by Z the ring of rational integers, and by M a Z-module with a finite basis $\left(\xi_{1}, \cdots, \xi_{m}\right)$ in the field of complex numbers. Suppose $a_{n} \in M(n=0,1,2, \cdots)$. Then a_{n} can be written uniquely in the form

$$
\alpha_{n}=u_{1, n} \xi_{1}+\cdots+u_{m, n} \xi_{m}
$$

with $u_{1, n}, \cdots, u_{m, n}$ in Z.
Let K be the field obtained from R by adjoining the complex numbers ξ_{1}, \cdots, ξ_{m}. We distinguish two cases according as K is or is not algebraic over R.

Case 1: K is algebraic over R. In this case K is a finite algebraic extension of R and ξ_{1}, \cdots, ξ_{m} are algebraic numbers. There exists, therefore, a non-zero rational integer a such that the numbers $a \xi_{1}, \cdots, a \xi_{m}$ are all algebraic integers in K, so that $a \alpha_{n}(n=0,1,2, \cdots)$ are algebraic integers. The theorem follows from the original result of Pólya if we simply replace there a_{n} by $a a_{n}$ for each n.

Case 2: K is not algebraic over R. Then K is of the form

$$
K=R\left(\sigma_{1}, \cdots, \sigma_{s}, \tau\right)
$$

where $\sigma_{1}, \cdots, \sigma_{s}(s \geqq 1)$ are complex numbers which are algebraically independent over R and τ is a complex number which is algebraic over the purely transcendental extension

$$
K_{0}=R\left(\sigma_{1}, \cdots, \sigma_{s}\right)
$$

of R. We may assume without loss of generality that τ is integral over the polynomial ring $R\left[\sigma_{1}, \cdots, \sigma_{s}\right]$.

In what follows we shall use the abbreviation σ for the set $\sigma_{1}, \cdots, \sigma_{s}$: thus, for example, $K=R(\sigma, \tau)$.

The generators ξ_{1}, \cdots, ξ_{m} of the module M can now be written as rational functions of σ and τ. In fact, we have

$$
\xi_{k}=\frac{X_{k}(\sigma, \tau)}{X(\sigma)} \quad(k=1, \cdots, m)
$$

where $X_{k}(\sigma, \tau) \in R[\sigma, \tau](k=1, \cdots, m)$ and $X(\sigma) \in R[\sigma]$.
Suppose now that the function $\sum_{n=0}^{\infty} n a_{n} z^{n}$ be rational. This is equivalent to suppose that the function $\sum_{n=1}^{\infty} n a_{n} z^{n-1}$ be rational, and so there are a non-zero polynomial $A(z)$ in $K_{0}[z]$ and a polynomial $B(z)$ in $K[z]$ such that

$$
\sum_{n=1}^{\infty} n a_{n} z^{n-1}=\frac{B(z)}{A(z)}
$$

Let $P_{1}(z), \cdots, P_{r}(z)$ be distinct irreducible factors of $A(z)$ in $K_{0}[z]$. By virtue of Lemmas 1 and 2 applied to $K_{1}=K_{0}, K_{2}=K$, we have then

$$
\sum_{n=1}^{\infty} n a_{n} z^{n-1}=\frac{d}{d z} \psi(z)+\sum_{j=1}^{r} \frac{R_{j}(z)}{P_{j}(z)}
$$

for a rational function $\psi(z)$ in $K(z)$ and some polynomials $R_{j}(z)(j=$ $1, \cdots, r)$ in $K[z]$ with $\operatorname{deg} R_{j}(z)<\operatorname{deg} P_{j}(z)(j=1, \cdots, r)$. We wish to show that the second term on the right-hand side of this equality is 0 (i.e. vanishes identically in z). For, otherwise, since we have for $n=1,2, \cdots$

$$
a_{n}=\sum_{k=1}^{m} u_{k, n} \xi_{k}=\frac{\sum_{k=1}^{m} u_{k, n} X_{k}(\sigma, \tau)}{X(\sigma)} \quad\left(u_{1, n}, \cdots, u_{m, n} \in Z\right),
$$

there would be non-zero elements $u=u(\sigma), v=v(\sigma)$ in $Z[\sigma]$ such that if we write

$$
u\left(\sum_{n=1}^{\infty} n a_{n}(v z)^{n-1}-\frac{d}{d(v z)} \psi(v z)\right)=\sum_{n=1}^{\infty} n c_{n} z^{n-1},
$$

then $c_{n} \in Z[\sigma, \tau](n=1,2, \cdots)$, and, moreover, we have

$$
u \sum_{j=1}^{r} \frac{R_{j}(v z)}{P_{j}(v z)}=\sum_{i=1}^{q} \frac{\alpha_{i} \omega_{i}}{1-\omega_{i} z} \quad(q \geqq 1)
$$

where the α_{i} are non-zero and algebraically integral over $Z[\sigma]$ and the ω_{i} are non-zero, mutually distinct, and algebraically integral over $Z[\sigma]$. It would then follow that

$$
\alpha_{1} \omega_{1}^{n}+\alpha_{2} \omega_{2}^{n}+\cdots+\alpha_{q} \omega_{q}^{n}=n c_{n} \quad(n=1,2, \cdots)
$$

We now take an arbitrary rational prime p and consider the equations

$$
\alpha_{1} \omega_{1}^{j p}+\alpha_{2} \omega_{2}^{j p}+\cdots+\alpha_{q} \omega_{q}^{j p}=j p c_{j p} \quad(j=1,2, \cdots, q)
$$

By elimination we get from these equations

$$
\alpha_{1} \operatorname{det} D=\operatorname{det} D_{1},
$$

where D is the matrix

$$
\left(\omega_{i}^{j p}\right)_{i, j=1}, \ldots, q
$$

and D_{1} is the one obtained from D by replacing the first column $\left(\omega_{1}^{j p}\right)_{j=1, \ldots, q}$ by $\left(j p c_{j p}\right)_{j=1, \ldots, q}$. The determinant $\operatorname{det} D$ is equal to $\omega_{1}^{p} \cdots \omega_{q}^{p}$ times the Vandermonde determinant $\left|\omega_{i}^{(j-1) p}\right|_{i, j=1, \ldots, q}$ and consequently $(\operatorname{det} D)^{2}$ is an element of $Z[\sigma]$. If we set

$$
\delta(\sigma)=\omega_{1} \cdots \omega_{q} \prod_{1 \leqslant \mu<\nu \leq q}\left(\omega_{\mu}-\omega_{\nu}\right),
$$

then $(\delta(\sigma))^{2}$ is a non-zero element of $Z[\sigma]$ and

$$
(\operatorname{det} D)^{2} \equiv(\delta(\sigma))^{2 p} \quad(\bmod p)
$$

Let N designate the norm with respect to K / K_{0} and d be the degree of α_{1} over K_{0}. Then

$$
F_{1}(\sigma)=\left(N \alpha_{1}\right)^{2}(\operatorname{det} D)^{2 a}
$$

is a polynomial of $Z[\sigma]$ whose coefficients are all divisible by p. Hence p must divide all the coefficients of the non-zero polynomial

$$
F(\sigma)=\left(N \alpha_{1}\right)^{2}(\delta(\sigma))^{2 a p}
$$

in $Z[\sigma]$. However, it is apparent that this is possible only for a finite number of rational primes p, which contradicts the arbitrariness of the choice of p.

Thus we have

$$
\sum_{n=1}^{\infty} n a_{n} z^{n-1}=\frac{d}{d z} \psi(z)
$$

and, by integration,

$$
\sum_{n=0}^{\infty} a_{n} z^{n}=\psi(z)-\psi(0)+a_{0}
$$

concluding the proof of our theorem.

References

[1] D. G. Cantor: On arithmetic properties of coefficients of rational functions. Pacific J. of Math., 15, 55-58 (1965).
[2] G. Pólya: Arithmetische Eigenschaften der Reihenentwicklungen rationaler Funktionen. J. Reine u. Angew. Math., 151, 1-31 (1921).

