112. Boundary Convergence of Blaschke Products in the Unit-Circle. II

By Chuji Tanaka
Mathematical Institute, Waseda University, Tokyo
(Comm. by Zyoiti Suetuna, m.J.A., Sept. 13, 1965)

1. Introduction. We denote by $B(z)$ a Blaschke product in the unit circle:

$$
B(z)=\prod_{n=1}^{+\infty} b\left(z, a_{n}\right)=\prod_{n=1}^{+\infty}\left\{1+c\left(z, a_{n}\right)\right\}
$$

where $b(z, a)=\bar{a} /|a| \cdot(a-z) /(1-\bar{a} z), 0<\left|a_{n}\right|<1, S=\sum_{n=1}^{+\infty}\left(1-\left|a_{n}\right|\right)<+\infty$. For the sake of convenience, we make here a list of notations, which are used often in the sequel:
[1] $d(z, a)=\left(1-|a|^{2}\right) /(\bar{a} z-1)$.
[2] $c(z, a)=(1-|a|) /|a|+1 /|a| \cdot d(z, a)$.
[3] $b(z, a)=1 /|a| \cdot(1+d(z, a))$

$$
=1+c(z, a)
$$

[4] $\quad \theta_{n}=\arg b\left(1, a_{n}\right),\left|\theta_{n}\right| \leqq \pi$.
[5] $\quad r_{n}=\left|d\left(1, a_{n}\right)\right|=\left(1-\left|a_{n}\right|^{2}\right) /\left|1-a_{n}\right|$, $R_{n}=\left(1-\left|a_{n}\right|\right) /\left|1-a_{n}\right|$.
[6] $\varphi_{n}=\arg d\left(1, a_{n}\right)=\arg b_{n}$, where $a_{n}=1+b_{n}, \pi / 2<\left|\varphi_{n}\right| \leqq \pi$.
The object of this note is to establish some new theorems on boundary convergence of $B(z)$. Our main theorems read as follows:

Theorem 1.
(1.1) $\sum_{n=1}^{+\infty} R_{n}<+\infty$, if and only if the following conditions hold simultaneously:
(1) $\sum_{n=1}^{+\infty}\left|\theta_{n}\right|<+\infty$,
(2) $\lim _{n \rightarrow+\infty} R_{n}=0$.

Remark 1. (1) By the inequalities:
$\left|c\left(1, a_{n}\right)\right|-\left(1-\left|a_{n}\right|\right) /\left|a_{n}\right| \leqq R_{n} \cdot\left(1+1 /\left|a_{n}\right|\right) \leqq\left|c\left(1, a_{n}\right)\right|+\left(1-\left|a_{n}\right|\right) /\left|a_{n}\right|$ $\sum_{n=1}^{+\infty}\left|c\left(1, a_{n}\right)\right|<+\infty$ is equivalent to $\sum_{n=1}^{+\infty} R_{n}<+\infty$ ([4] p. 67).
(2) In connection with Theorem 1, the following theorem due to O. Frostman ([2] p. 2) is very interesting; The necessary and sufficient condition that $B(z)$ and all its partial products have the radial limit of modulus one at $z=1$ is that $\sum_{n=1}^{+\infty} R_{n}<+\infty$.

Theorem 2 and 3 give the necessary and sufficient conditions for $\sum_{n=1}^{+\infty} c\left(1, a_{n}\right)$ to be convergent.

Theorem 2. $\sum_{n=1}^{+\infty} c\left(1, a_{n}\right)$ is convergent, if and only if the following conditions hold simultaneously:
(1) $\sum_{n=1}^{+\infty}\left(R_{n}\right)^{2}<+\infty$
(2) $\sum_{n=1}^{+\infty} R_{n} \delta_{n}$ is convergent, where

$$
\begin{equation*}
\delta_{n}=\operatorname{sgn}\left[\sin \left(\varphi_{n}\right)\right] . \tag{1.4}
\end{equation*}
$$

Theorem 3. $\sum_{n=1}^{+\infty} c\left(1, a_{n}\right)$ is convergent, if and only if the following conditions hold simultaneously:
(1) $\sum_{n=1}^{+\infty} \theta_{n}^{2}<+\infty$
(2) $\sum_{n=1}^{+\infty} \theta_{n}$ is convergent.

Remark 2. If $\sum_{n=1}^{+\infty} c\left(1, a_{n}\right)$ is convergent, then $B(1)=\prod_{n=1}^{+\infty} b\left(1, a_{n}\right)$ is convergent, because $\prod_{n=1}^{+\infty} b\left(1, a_{n}\right)=\exp \left\{i \sum_{n=1}^{+\infty} \theta_{n}\right\}$ is convergent by (1.5) (2).

Theorem 4 is of Abelian type.
Theorem 4. Suppose that $\sum_{n=1}^{+\infty} c\left(1, a_{n}\right)$ is convergent. Then $\lim _{r \rightarrow 1} B(r)=B(1)$,*) if and only if

$$
\begin{equation*}
\lim _{r \rightarrow 1-0} \sum_{n=1}^{+\infty} c\left(r, a_{n}\right)=\sum_{n=1}^{+\infty} c\left(1, a_{n}\right) . \tag{1.6}
\end{equation*}
$$

2. Theorem 1. We begin with the following inequalities:

$$
\begin{array}{ll}
\text { (1) }\left|\theta_{n}\right|<\pi R_{n} & \text { for }\left|\theta_{n}\right| \leqq \pi / 2 . \tag{2.1}\\
\text { (2) }\left|\theta_{n}\right|>\cos \delta \cdot R_{n} & \text { for } \pi / 2<\left|\varphi_{n}\right| \leqq \pi / 2+\delta<\pi .
\end{array}
$$

Indeed, since $b\left(1, a_{n}\right)=1 /\left|a_{n}\right|\left(1+d\left(1, a_{n}\right)\right)$, we have easily

$$
\theta_{n}=\arg \left\{1+d\left(1, a_{n}\right)\right\}, \quad\left|a_{n}\right|=\left|1+d\left(1, a_{n}\right)\right|,
$$

so that, taking account of $d\left(1, a_{n}\right)=r_{n} \cdot \exp \left(i \varphi_{n}\right)$, by sine rule
(2.2) $\quad \sin \theta_{n} / r_{n}=\sin \varphi_{n} /\left|a_{n}\right|=\sin \left(\varphi_{n}-\theta_{n}\right) / 1$.

Since $2 / \pi \cdot\left|\theta_{n}\right| \leqq\left|\sin \theta_{n}\right|$ for $\left|\theta_{n}\right| \leqq \pi / 2$, by (2.2) $2\left|\theta_{n}\right| / \pi r_{n} \leqq 1$, i.e. (2.3) $\quad\left|\theta_{n}\right|<\pi R_{n} \quad$ for $\left|\theta_{n}\right| \leqq \pi / 2$.

By (2.2) $\left|\theta_{n}\right| / r \geqq \sin (\pi / 2+\delta) /\left|a_{n}\right|=\cos \delta \cdot 1 /\left|a_{n}\right|$ for $\pi / 2<\left|\varphi_{n}\right| \leqq \pi / 2+$ $\delta<\pi$, so that
(2.4) $\quad\left|\theta_{n}\right|>\cos \delta \cdot R_{n} \quad$ for $\pi / 2<\left|\varphi_{n}\right| \leqq \pi / 2+\delta<\pi$.

By (2.3) and (2.4), (2.1) is completely established.
Suppose that (1.1) holds good. Then we have evidently $\lim _{n \rightarrow+\infty} R_{n}=0$, i.e. $\lim _{n \rightarrow+\infty} r_{n}=0$, so that by (2.2) $\lim _{n \rightarrow+\infty} \theta_{n}=0$. Hence there exists N such that $\left|\theta_{n}\right| \leqq \pi / 2$ for $n \geqq N . \quad B y \stackrel{n+\infty}{ }(2.1)(1)$

$$
\sum_{n=N}^{+\infty}\left|\theta_{n}\right|<\pi \sum_{n=N}^{+\infty} R_{n}<+\infty .
$$

[^0]Therefore (1.2) (1) and (2) follow from (1.1).
Next suppose that (1.2) (1) and (2) hold good. We divide the unit disk into the following three parts:

$$
\begin{array}{lr}
\Delta_{1}=(z ;|z|<1,|z-1| \geqq \rho) & (0<\rho<1) \\
A_{2}=(z ;|z|<1,|z-1|<\rho,|\arg (z-1)| \leqq \theta<\pi / 2) & (2 \cos \theta=\rho), \\
\Delta_{3}=(z ;|z|<1,|z-1|<\rho,|\arg (z-1)|>\theta) . &
\end{array}
$$

Then, by (2.1) (2)

$$
\begin{equation*}
\sum_{a_{n} \in A_{3}} R_{n}<\sec \delta \cdot \sum_{a_{n} \in A_{3}}\left|\theta_{n}\right|<+\infty, \tag{2.5}
\end{equation*}
$$

where $\delta=\pi / 2-\theta$. We have evidently

$$
\begin{equation*}
\sum_{a_{n} \in A_{1}} R_{n} \leqq 1 / \rho \cdot \sum_{a_{n} \in A_{1}}\left(1-\left|a_{n}\right|\right)<S / \rho<+\infty \tag{2.6}
\end{equation*}
$$

By the assumptions: $\lim _{n \rightarrow+\infty} R_{n}=0, z=1$ is not the limit point of $\left\{a_{n}\right\}$ contained in Δ_{2}. Hence possible limit points of $\left\{a_{n}\right\}$ contained in Δ_{2} are the intersection points of $|z|=1$ and $|z-1|=\rho$ so that, denoting by ρ^{*} a sufficiently small positive constant, we have

$$
\begin{equation*}
\sum_{a_{n} \in A_{2}} R_{n} \leqq 1 / \rho^{*} \cdot \sum_{a_{n} \in A_{2}}\left(1-\left|a_{n}\right|\right)<S / \rho^{*}<+\infty . \tag{2.7}
\end{equation*}
$$

By (2.5), (2.6), and (2.7), $\sum_{n=1}^{+\infty} R_{n}<+\infty$. Thus (1.1) follows from (1.2) (1) and (2).

Since $b\left(r, a_{n}\right)$ maps the segment: $0 \leqq r \leqq 1$ onto the circular arc of the circle passing through two points $\left|a_{n}\right|$ and $1 /\left|a_{n}\right|$ and orthogonal to $|z|=1,\left|\arg \left(b\left(r, a_{n}\right)\right)\right|$ is non-decreasing function of r for $0 \leqq r \leqq 1$. Hence $\sum_{n=1}^{+\infty}\left|\theta_{n}\right|<+\infty$ is equivalent to $\lim _{r \rightarrow 1-0} \sum_{n=1}^{+\infty}\left|\arg b\left(r, a_{n}\right)\right|<+\infty$, so that, by Theorem 1 we get

Corollary 1. (C. Tanaka [4] pp. 68-69) $\sum_{n=1}^{+\infty} R_{n}<+\infty$, if and only if the following two conditions hold simultaneously:

> (1) $\lim _{r \rightarrow 1-0} \sum_{n=1}^{+\infty}\left|\arg b\left(r, a_{n}\right)\right|<+\infty$
> (2) $\lim _{n \rightarrow+\infty} R_{n}=0$

As another application of Theorem 1, we obtain
Corollary 2. If $\sum_{n=1}^{+\infty} R_{n}=+\infty$, then $\lim _{r \rightarrow 1-0} \sum_{n=1}^{+\infty}\left|\arg b\left(r, a_{n}\right)\right|=+\infty$.
Proof. By Theorem 1, the following two alternatives are possible:
(1) $\varlimsup_{n \rightarrow+\infty} R_{n}>0$
(2) $\lim _{n \rightarrow+\infty} R_{n}=0$, and $\sum_{n=1}^{+\infty}\left|\theta_{n}\right|=+\infty$.

In case (2.8) (1), by (2.2) $\varlimsup_{n \rightarrow+\infty}\left|\theta_{n}\right|>0$, so that $\sum_{n=1}^{+\infty}\left|\theta_{n}\right|=+\infty$. Thus, in any case we have $\sum_{n=1}^{+\infty}\left|\theta_{n}\right|=+\infty$. Since $\left|\arg b\left(r, a_{n}\right)\right|$ is non-decreasing function of r for $0 \leqq r \leqq 1$, we have easily $\lim _{r \rightarrow 1-0} \sum_{n=1}^{+\infty}\left|\arg b\left(r, a_{n}\right)\right|=+\infty$, which proves Corollary 2.

If $\Im\left(a_{n}\right) \geqq 0$, then $\arg b\left(r, a_{n}\right) \geqq 0$ for $0 \leqq r \leqq 1$. Hence, by Corollary 2 we get.

Corollary 3. (G. T. Cargo [1] p. 5) If $\sum_{n=1}^{+\infty} R_{n}=+\infty$ and $\Im\left(a_{n}\right) \geqq 0$ $(n=1,2, \cdots)$, then $\arg \{B(r)\}$ tends monotonously to $+\infty$ as $r \rightarrow 1-0$.
3. Theorem 2-4. Proof of Theorem 2. Since

$$
c\left(1, a_{n}\right)=\left(1-\left|a_{n}\right|\right) /\left|a_{n}\right|+1 /\left|a_{n}\right| \cdot r_{n} \cdot \exp \left(i \varphi_{n}\right)
$$

the convergence of $\sum_{n=1}^{+\infty} c\left(1, a_{n}\right)$ is equivalent to the convergence of $\sum_{n=1}^{+\infty} r_{n} /\left|a_{n}\right| \cdot \cos \varphi_{n}+i \sum_{n=1}^{+\infty} r_{n} /\left|a_{n}\right| \cdot \sin \varphi_{n}$.

By (2.2), we have easily

$$
\begin{equation*}
-\cos \varphi_{n}=1 / 2\left\{\left|1-a_{n}\right|+r_{n}\right\} \tag{3.1}
\end{equation*}
$$

so that

$$
-\sum_{n=1}^{+\infty} r_{n} /\left|a_{n}\right| \cdot \cos \varphi_{n}=1 / 2\left\{\sum_{n=1}^{+\infty} r_{n}^{2} /\left|a_{n}\right|+\sum_{n=1}^{+\infty}\left(1-\left|a_{n}\right|\right)\left(1+1 /\left|a_{n}\right|\right)\right\}
$$

Hence the convergence of $\sum_{n=1}^{+\infty} r_{n}| | a_{n} \mid \cdot \cos \varphi_{n}$ is equivalent to the convergence of $\sum_{n=1}^{+\infty} r_{n}^{2}$.

Defining δ_{n} as in (1.4), by (3.1) we get easily $r_{n}| | a_{n}|\cdot| \delta_{n}-\sin \varphi_{n}\left|=r_{n}\right|\left|a_{n}\right| \cdot \cos ^{2} \varphi_{n} /\left(1+\left|\sin \varphi_{n}\right|\right)$

$$
=\left\{r_{n}^{3}+2 r_{n}^{2} \cdot\left|1-a_{n}\right|+\left(1-\left|a_{n}\right|^{2}\right) \cdot\left|1-a_{n}\right|\right\} 1 /\left(4\left|a_{n}\right| \cdot\left(1+\left|\sin \varphi_{n}\right|\right)\right)
$$

for $\pi / 2<\left|\varphi_{n}\right|<\pi$. Since $1 / 2<1 /\left(1+\left|\sin \varphi_{n}\right|\right)<1$ for $\pi / 2<\left|\varphi_{n}\right|<\pi$, $\sum_{n=1}^{+\infty} r_{n}^{2}<+\infty$ means $\sum_{n=1}^{+\infty} r_{n}| | a_{n}|\cdot| \delta_{n}-\sin \varphi_{n} \mid+<\infty$, so that under the assumptions: $\sum_{n=1}^{+\infty} r_{n}^{2}<+\infty$, the convergence of $\sum_{n=1}^{+\infty} r_{n}| | a_{n} \mid \cdot \sin \varphi_{n}$ is equivalent to the convergence of $\sum_{n=1}^{+\infty} \delta_{n} r_{n} /\left|a_{n}\right|$.

Thus we have proved that the convergence of $\sum_{n=1}^{+\infty} c\left(1, a_{n}\right)$ is equivalent to the convergence of the following two series;

$$
\begin{align*}
& \text { (1) } \sum_{n=1}^{+\infty} r_{n}^{2}, \tag{3.2}\\
& \text { (2) } \sum_{n=1}^{+\infty} \delta_{n} r_{n} /\left|a_{n}\right| \cdot
\end{align*}
$$

Since $\sum_{n=1}^{+\infty} r_{n}^{2}=\sum_{n=1}^{+\infty} R_{n}^{2} \cdot\left(1+\left|a_{n}\right|\right)^{2}$

$$
\sum_{n=1}^{+\infty} \delta_{n} r_{n} /\left|a_{n}\right|=2 \sum_{n=1}^{+\infty} \delta_{n} R_{n}+\sum_{n=1}^{+\infty}\left(1-\left|a_{n}\right|\right) \cdot \delta_{n} R_{n} /\left|a_{n}\right|
$$

the convergence of (3.2) (1)-(2) is equivalent to (1.3) (1)-(2).
Proof of Theorem 3. By (2.2), we get easily

$$
\cos \theta_{n}=\left(1+\left|a_{n}\right|^{2}-r_{n}^{2}\right) / 2\left|a_{n}\right|,
$$

so that

$$
\begin{equation*}
r_{n}^{2} / 4\left|a_{n}\right|-\sin ^{2}\left(\theta_{n} / 2\right)=1 / 4\left|a_{n}\right| \cdot\left(1-\left|a_{n}\right|\right)^{2} \tag{3.3}
\end{equation*}
$$

By (3.3), $\sum_{n=1}^{+\infty} r_{n}^{2}$ is equivalent to $\sum_{n=1}^{+\infty} \theta_{n}^{2}<+\infty$. Since $\sin \theta_{n}-\theta_{n}=$
$\theta_{n}^{3} / 3!+0\left(\theta_{n}^{5}\right)$, the convergence of $\sum_{n=1}^{+\infty} \theta_{n}$ is equivalent to the convergence of $\sum_{n=1}^{+\infty} \sin \theta_{n}$, provided that $\sum_{n=1}^{+\infty} \theta_{n}^{2}<+\infty$. By (2.2), $\sin \theta_{n}=$ $r_{n} /\left|a_{n}\right| \cdot \sin \varphi_{n}$. Hence, under the assumptions: $\sum_{n=1}^{+\infty} \theta_{n}^{2}<+\infty, \sum_{n=1}^{+\infty} r_{n}| | a_{n} \mid \cdot$ $\sin \varphi_{n}$ and $\sum_{n=1}^{+\infty} \theta_{n}$ are equiconvergent.

By what is proved in the proof of Theorem 2, the convergence of $\sum_{n=1}^{+\infty} c\left(1, a_{n}\right)$ is equivalent to the convergence of two series: $\sum_{n=1}^{+\infty} r_{n}^{2}$ and $\sum_{n=1}^{+\infty} r_{n}| | a_{n} \mid \cdot \sin \varphi_{n}$. Thus Theorem 3 is completely established.

Proof of Theorem 4. By the inequality:

$$
\begin{array}{ll}
\left|1-\bar{a}_{n} r\right| \geqq r\left|a_{n}-1\right| & \text { for } 0<r \leqq 1, \\
\left|d\left(r, a_{n}\right)\right|=\left(1-\left|a_{n}\right|\right) /\left|\bar{a}_{n} r-1\right| \leqq r_{n} / r<2 r_{n} & \text { for } 1 / 2 \leqq r \leqq 1 .
\end{array}
$$

Therefore,

$$
\begin{align*}
\left|c\left(r, \alpha_{n}\right)\right|^{2} & \leqq 1 /\left|\alpha_{n}\right|^{2}\left\{\left(1-\left|\alpha_{n}\right|\right)+\left|d\left(r, \alpha_{n}\right)\right|\right\}^{2} \tag{3.4}\\
& <1 /\left|a_{n}\right|^{2}\left\{\left(1-\left|a_{n}\right|\right)^{2}+4 r_{n}\left(1-\left|\alpha_{n}\right|\right)+4 r_{n}^{2}\right\}
\end{align*}
$$

for $1 / 2 \leqq r \leqq 1$.
Let us put

$$
\begin{align*}
\log b\left(r, a_{n}\right)-c\left(r, a_{n}\right) & =\log \left\{1+c\left(r, a_{n}\right)\right\}-c\left(r, a_{n}\right) \tag{3.5}\\
& =e\left(r, a_{n}\right) \cdot c^{2}\left(r, a_{n}\right) .
\end{align*}
$$

If $\lim _{n \rightarrow+\infty} r_{n}=0$, then by (3.4) and (3.5)

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} e\left(r, a_{n}\right)=-1 / 2 \text { uniformly for } 1 / 2 \leqq r \leqq 1 \tag{3.6}
\end{equation*}
$$

Suppose now that $\sum_{n=1}^{+\infty} c\left(1, a_{n}\right)$ is convergent. Then by Theorem 2, (3.4) and (3.6), $\sum_{n=1}^{+\infty} e\left(r, a_{n}\right) \cdot c^{2}\left(r, a_{n}\right)$ is absolutely and uniformly convergent for $1 / 2 \leqq r \leqq 1$. Hence

$$
\lim _{r \rightarrow 1-0} \sum_{n=1}^{+\infty} e\left(r, a_{n}\right) \cdot c^{2}\left(r, a_{n}\right)=\sum_{n=1}^{+\infty} e\left(1, a_{n}\right) \cdot c^{2}\left(1, a_{n}\right),
$$

so that, by (3.5)

$$
\begin{align*}
& \lim _{r \rightarrow 1-0}\left\{\log B(r)-\sum_{n=1}^{+\infty} c\left(r, a_{n}\right)\right\} \tag{3.7}\\
& =\log B(1)-\sum_{n=1}^{+\infty} c\left(1, a_{n}\right)
\end{align*}
$$

By (3.7) $\lim _{r \rightarrow 1-0} B(r)=B(1)$, if and only if $\lim _{r \rightarrow 1-0} \sum_{n=1}^{+\infty} c\left(r, a_{n}\right)=\sum_{n=1}^{+\infty} c\left(1, a_{n}\right)$, which is to be proved.

As its application, we obtain
Corollary 4. (C. Tanaka [3] p. 410, [4] p. 70) If B(z) is absolutely convergent at $z=1$, then $\lim _{r \rightarrow 1-0} B(r)=B(1)$.

Proof. Since $\sum_{n=1}^{+\infty}\left|c\left(1, a_{n}\right)\right|<+\infty$, by Remark $1(1), \sum_{n=1}^{+\infty} R_{n}<+\infty$, i.e. $\sum_{n=1}^{+\infty} r_{n}<+\infty$. Similarly as in (3.4), we have

$$
\left|c\left(r, a_{n}\right)\right|<1 /\left|a_{n}\right|\left\{\left(1-\left|a_{n}\right|\right)+2 r_{n}\right\} \quad \text { for } 1 / 2 \leqq r \leqq 1,
$$

so that $\sum_{n=1}^{+\infty} c\left(r, a_{n}\right)$ is absolutely and uniformly convergent for $1 / 2 \leqq$ $r \leqq 1$. Hence $\lim _{r \rightarrow 1-0} \sum_{n=1}^{+\infty} c\left(r, a_{n}\right)=\sum_{n=1}^{+\infty} c\left(1, a_{n}\right)$. Thus, by Theorem 4, Corollary 4 is proved.

Acknowledgement. The author wishes to express his hearty thanks to Prof. G. T. Cargo for his valuable criticism on [4] (MR 29 \# 2399), which motivated this note.

References

[1] G. T. Cargo: The boundary behavior of Blaschke products. Jour. Math. Anal. App., 5, 1-16 (1962).
[2] O. Frostman: Sur les produits de Blaschke. Kungl. Fysiogr. Sällsk. i Lund Förh., 12 (15), 169-182 (1942).
[3] C. Tanaka: Boundary convergence of Blaschke products in the unit-circle. Proc. Japan Acad., 39 (7), 410-412 (1963).
[4] -: On Blaschke products in the unit-circle. Mem. School Sci. Engrg. Waseda Univ. Tokyo., 27, 67-77 (1963).

[^0]: *) By Remark 2, B(1) exists.

