7. An Algebra Related with a Propositional Calculus

By Kiyoshi Iséki
(Comm. by Kinjirô Kunugı, m.J.A., Jan. 12, 1966)

In this note, we shall consider a new algebra induced by the $B C I$-system of propositional calculus by C. A. Meredith quoted into A. N. Prior, Formal Logic ([4], p. 316). ${ }^{1)}$

Unfortunately, we can not find the details on the $B C I$ and $B C K$ systems in literatures. For the completeness, giving its detail, we shall develop our consideration.

If we take the $B C I$-system or the weak positive implicational calculus by A. Church, these systems are given by the following axioms.
$B C I$-system: $\quad C C p q C C q r C p r, C p C C p q q$, and $C p p$,
WPI-system: $\quad C C p C p q C p q, C C q r C C p q C p r, C C p C q r C q C p r$, and Cpp.

In these systems, we can not deduce an important thesis: $C p C q p$. From an attempt of algebraic formulations, we have a quite different situation from our former discussions (see [1], [2]).

Let $\boldsymbol{M}=\langle X, 0, *\rangle$ be an abstract algebra consisting of a set X with an element 0 and a binary operation *. If \boldsymbol{M} satisfies the following conditions $B C I 1 \sim 5$, it is called a BCI-algebra.

BCI $1(x * y) *(x * z) \leqslant z * y$,
BCI $2 x *(x * y) \leqslant y$,
BCI $3 x \leqslant x$,
$B C I 4 x \leqslant y, y \leqslant x$ imply $x=y$,
$B C I 5 x \leqslant 0$ implies $x=0$,
where $x \leqslant y$ means $x * y=0$.
Here we do not assume $0 * x=0$, i.e. $0 \leqslant x$. This is an essential part and differs from axiom systems formulated in our previous notes [1], [2]. BCI 5 shows that $x * 0=0$ implies $x=0$. And we have $0 * x=0 * 0=0$. Hence if $x * 0=0 * x=0$, then $x=0$.

From the first axiom, we have the following important results:
(1) $x \leqslant y$ implies $z * y \leqslant z * x . x \leqslant y, y \leqslant z$ imply $x \leqslant z$.

By (1), if $x=y, y=z$, then $x=z$.
Theorem 1. The second axiom in BCI-alyebra is replaced by (2) $(x * y) * z \leqslant(x * z) * y$.

[^0]Proof. Assume axioms 1, 3 and the condition (2), then

$$
(x *(x * y)) * y \leqslant(x * y) *(x * y)=0
$$

By $B C I 5$, we have $(x *(x * y)) * y=0$, i.e. $x *(x * y) \leqslant y$.
Conversely, we shall show that axioms of $B C I$-algebra imply (2). By (1), we have

$$
\text { (3) } \quad u *(z * y) \leqslant u *((x * y) *(x * z)) \text {. }
$$

We substitute $x * u$ for $x, x * z$ for $z,((x * u) * y) *(z * u)$ for u in (3), and use (3), then we have

$$
\begin{aligned}
& ((x * u) * y) *(z * u)) *((x * z) * y) \\
\leqslant & (((x * u) * y) *(z * u)) *(((x * u) * y) *((x * u) *(x * z)))=0 .
\end{aligned}
$$

Hence we have
(4) $((x * u) * y) *(y * u) \leqslant(x * z) * y$,
which is a thesis in J. Lukasiewicz [2]. In this formula, let $u=z$, $z=x * y$, then we have the following formula

$$
((x * z) * y) *((x * y) * z) \leqslant(x *(x * y)) * y
$$

The right side is equal to 0 by $B C I 2$. Therefore we have $(x * z) * y \leqslant(x * y) * z$, which means the formula (2). We complete the proof of Theorem 1.

Remark 1. Under the formula (2), $(x * y) *(x * z) \leqslant z * y$ and $(x * y) *(z * y) \leqslant x * z$ are equivalent.

Remark 2. Let $(x * y) * z=0$, i.e. $x * y \leqslant z$, then by (1), we have $x * z \leqslant x *(x * y) \leqslant y$. Hence if $x * y \leqslant z$, then $x * z \leqslant y$.

Remark 3. Formula (2) is written in form of

$$
(x * y) * z=(x * z) * y
$$

by $B C I 4$.
Theorem 2. In a BCI-algebra, we have the following formulas:
(5) $((x * y) * z) *(u * z) \leqslant(x * u) * y$,
(6) $((x * y) * z) *((x * u) * y) \leqslant u * z$,
(7) $(x * y) *(z * u) \leqslant x *(z *(u * y))$,
(8) $(x * y) *(x *(z *(u * y))) \leqslant z * u$.
Proof. By the formula
(9) $(x * y) *(z * y) \leqslant x * z$
and (2), we have

$$
((x * y) * z) *(u * z) \leqslant(x * y) * u \leqslant(x * u) * y
$$

which shows formula (5). Formula (6) is obtained by (2) and (5). By Remark 3, we have $(x * y) *(z * u)=(x *(z * u)) * y$ and by using $B C I 1$ and 2,

$$
(x *(z * u)) *(x *(z *(u * y))) \leqslant(z *(u * y)) *(z * u) \leqslant u *(u * y) \leqslant y
$$

Therefore

$$
(x *(z * u)) * y \leqslant x *(z *(u * y))
$$

and we have

$$
(x * y) *(z * u) \leqslant x *(z *(u * y))
$$

which is formula (7). Further, by (2) and (7), we have formula (8). Therefore the proof is complete.

Formulas (5), (6), (7), and (8) are found in [4].
If $B C I 5$ is replaced by $0 * x=0$, i.e.
$B C I 6 . \quad 0 \leqslant x$ for every $x \in X$,
then, by (2) and $B C I 6$, we have

$$
(x * y) * x \leqslant(x * x) * y=0
$$

for every $y \in X$. Hence we have $x * y \leqslant x$. Conversely, if $x * y \leqslant x$ and (2) hold, then $0=x * x \leqslant y$ for every $y \in X$.

An algebra M satisfying $B C I 1 \sim 4$ and $B C I 6$ corresponds to the $B C K$ system on propositional calculus introduced by C. A. Meredith. If the axiom $C p p$ in the $B C I$ system of propositional calculus is replaced by $C p C q p$, then we obtain the $B C K$ system of propositional calculus (see A. N. Prior [4]). Therefore M is called BCK-algebra.

Next we shall consider formulas to characterize two algebras mentioned above.

Consider an algebra satisfying $B C I 3 \sim 5$ and (5), then it is a $B C I$-algebra.

To prove it, we first show (5) implies (6) under the condition $B C I$ 3~5. Assume that formula (5), if $x * u \leqslant y$, then $(x * y) * z \leqslant$ $u * z$. Put $u=z$, then we have $x * y \leqslant z$, if $x * z \leqslant y$. Hence $B C I$ $3 \sim 5$ and (5) imply that if $x * y \leqslant z$, then $x * z \leqslant y$. Hence $B C I 3 \sim 5$ and (5) imply (6). In formula (6), let $u=z$, then $(x * y) * z \leqslant(x * z) * y$. Hence by $B C I 4$, we have
(10) $(x * y) * z=(x * z) * y$.

In formula (5), let $y=x * u$, then

$$
(x *(x * u)) * z \leqslant u * z
$$

Applying (10), then we have

$$
(x * y) *(x * z) \leqslant z * y
$$

which is $B C I$ 1. Further, in (5), put $y=x * x, u=z=y$, then

$$
((x *(x * y) * y) *(y * y) \leqslant(x * y) *(x * y)=0
$$

Since $y * y=0$, we have $x *(x * y) * y=0$, which is BCI 2.
Next, assume (6) and BCI 3~5. As shown above, (6) implies (10). Hence under these conditions, we have (5). Therefore we have the following

Theorem 3. A BCI-algebra is characterized by BCI 3~5 and (5) (or (6)), and

Theorem 4. A BCK-algebra is characterized by BCI 3, 4, 6, and (5) (or (6)).

Next consider $B C I 3 \sim 5$, and (7). In formula (7), put $x=$ $(x * y) *(z * u), y=u * y, z=x$, and $u=z$, then we have

$$
\begin{aligned}
&(((x * y) *(z * u)) *(u * y)) *(x * z) \\
& \leqslant((x * y) *(z * u)) *(x *(z *(u * y)))=0
\end{aligned}
$$

by (7). Hence $((x * y) *(z * u)) *(u * y) \leqslant x * z$. Further in this formula, let $x * z=0, u=y$, then we have $((x * y) *(z * u)) * 0=0$, and we have $x * y \leqslant z * y$. Hence if $x \leqslant z$, then $x * y \leqslant z * y$. Therefore $x \leqslant y, y \leqslant z$ imply $x \leqslant z$. To deduce $B C I 1$, we again use formula (7). We substitute x for z, z for u in (7), then

$$
(x * y) *(x * z) \leqslant x *(x *(z * y))
$$

On the other hand, in (7), put $x=z *(u * y)$, then

$$
(((z *(u * y)) * y) *(z * u) \leqslant(z *(u * y)) *(z *(u * y))=0
$$

and we have $(z *(u * y)) * y \leqslant z * u$. Let $u=z$ in this formula, then we have $x *(x * y) \leqslant y$, which is BCI 2. This implies $x *(x *(z * y)) \leqslant$ $z * y$. Therefore we have the following formula

$$
(x * y) *(x * z) \leqslant x *(x *(z * y)) \leqslant z * y
$$

which is $B C I$ 1. Hence we have the following
Theorem 5. A BCI-algebra is characterized by BCI 3~5 and (7). A BCK-algebra is characterized by BCI 3, 4, 6, and (7).

Remark 4. S. Tanaka has shown (in an oral communication) that the $B C I, B C K$ algebras are characterized by using formula (8). The detail will be published.

Remark 5. Roughly speaking, 0 is the least element in the $B C I$-algebra, and a minimal element in the $B C K$-algebra. An algebra having 0 as the least element is Sobocinski algebra formulated by three value calculus (see [5]).

References

[1] K. Iséki: Algebraic formulations of propositional calculi. Proc. Japan Acad., 41, 803-807 (1965).
[2] Y. Imai and K. Iséki: On axiom systems of propositional calculi. XIV. Proc. Japan Acad., 42, 19-22 (1966).
[3] J. Lukasiewicz: Elements of Mathematical Logic. Oxford (1963).
[4] A. N. Prior: Formal Logic. Oxford (1963).
[5] B. Sobociński: Axiomatization of a partial system of three value calculus of propositions. Jour. of Computing Systems., 1, 23-55 (1952).

[^0]: 1) In my seminar on mathematical logic, Mr. Shôtarô Tanaka announced forming rules to produce a single axiom from several axioms of CN-types in propositional calculi. His results are based on so called BCI, BCK-systems introduced by C. A. Meredith (see A. N. Prior [4], p. 316).
