4. Connection of Topological Fibre Bundles

By Akira ASADA

(Comm. by Kinjirô KUNUGI, M.J.A., Jan. 12, 1966)

In Asada [2], we give a general theory of connections of topological vector bundles. There a connection form $\{\theta_{\sigma}\}$ of the given bundle ξ has following property: The value of $1+\theta_{\sigma}$ belongs in G, the structure group of ξ . Therefore starting from $\{s_{\sigma}\}=\{1+\theta_{\sigma}\}$, we can construct a theory of connections of arbitrary topological fibre bundles without using the ring A of Asada [2]. To state this theory is the purpose of this note. But we don't know whether there exists or not a connection form for an arbitrary fibre bundle ξ .

1. Connection of fibre bundles. We denote by X a topological space, ξ a topological fibre bundle over X with structure group G. The transition functions of ξ are denoted by $g_{\sigma\nu}$.

As in Asada [2], $n^{\circ}1$, we denote the group of continuous maps from $V(\varDelta_s(U))$ to G with equivalence relation $f_1 \sim f_2$ if and only if $f_1 | W = f_2 | W$ for some neighborhood $W(\varDelta_s(U))$ of $\varDelta_s(U)$ in $U \times \cdots \times U$ by $\tilde{C}^s(U, G)$ and set

 $C^{s}(U,G) = \{f | f \in \widetilde{C}^{s}(U,G), f(\dots, x_{i}, x_{i}, \dots) = 1 \text{ for all } i, 0 \le i \le s-1\}.$ Then we define the sheaves $\widetilde{\mathcal{G}}^{r} = \widetilde{\mathcal{G}}^{r}(\xi)$ and $\mathcal{G}^{r} = \mathcal{G}^{r}(\xi)$ by

 $\widetilde{\mathcal{G}}^r : ext{ the sheaf of germs of those maps } \{f_{\scriptscriptstyle \mathcal{D}}\}, f_{\scriptscriptstyle \mathcal{D}} \in \widetilde{C}^r(U,G), \ g_{\scriptscriptstyle \mathcal{D} V}(x_0)^{-1} f_{\scriptscriptstyle \mathcal{D}}(x_0, \, \cdots, \, x_r) g_{\scriptscriptstyle \mathcal{D} V}(x_r) \!=\! f_{\scriptscriptstyle \mathcal{V}}(x_0, \, \cdots, \, x_r).$

 \mathcal{G}^r : the subsheaf of $\tilde{\mathcal{G}}^r$ consisted those elements $\{f_U\}$ that $f_U \in C^r(U, G)$ for all U.

Definition. If $\{s_{v}\} \in H^{0}(X, \mathcal{G}^{1})$, then we call $\{s_{v}\}$ is a connection form of ξ .

Note. As usual, if $\{s_{\upsilon}\}$ is a connection form of $\{g_{\upsilon\nu}\}, \{U'\}$ is a refinement of $\{U\}$ and $g_{\upsilon'\nu'} = g_{\upsilon\nu'} | U' \cap V'$, then $\{s_{\upsilon'}\}, s_{\upsilon'} = s_{\upsilon} | U'$, becomes a connection form of $\{g_{\upsilon'\nu'}\}$. We identify $\{s_{\upsilon}\}$ and this $\{s_{\upsilon'}\}$. On the other hand, if $\{s_{\upsilon}\}$ is a connection form of $\{g_{\upsilon\nu}\}$ then $\{h_{\upsilon}(x_0)s_{\upsilon}(x_0, x_1)h_{\upsilon}(x_1)^{-1}\}$ is a connection form of $\{h_{\upsilon}g_{\upsilon\nu}h_{\nu'}^{-1}\}$. We identify $\{s_{\upsilon}\}$ and this $\{h_{\upsilon}s_{\upsilon}h_{\upsilon'}^{-1}\}$. For the simplicity, we identify $\{s_{\upsilon}\}$ and the equivalence class of $\{s_{\upsilon}\}$.

Lemma 1. $H^{0}(X, \mathcal{G}^{1})$ is non-empty if and only if $H^{0}(X, \tilde{\mathcal{G}}^{1})$ is non-empty.

Lemma 2. {1} belongs in $H^{0}(X, \mathcal{G}^{1})$ if and only if {1} belongs in $H^{0}(X, \tilde{\mathcal{G}}^{1})$.

Theorem 1. ξ is equivalent to a bundle with tatally disconnect structure group if and only if $\{1\}$ becomes a connection form of ξ . **Proof.** If $\{h_{\sigma}g_{\sigma\nu}h_{\nu}^{-1}\}$ is locally constant, then $\{s_{\sigma}(x_{0}, x_{1})\}=$ $\{h_{\sigma}(x_0)h_{\sigma}(x_1)^{-1}\}$ belongs in $H^0(X, \mathcal{G}^1)$. On the other hand, if $\{1\}$ belongs in $H^0(X, \mathcal{G}^1)$, then $\{g_{\sigma\nu}\}$ is locally constant. Hence we get the theorem.

Corollary. The connected component of the structure group of ξ is reduced to H, a subgroup of G, if there exists a connection form $\{s_{\upsilon}\}$ of ξ such that the class of the value of $\{s_{\upsilon}\}$ in $H\backslash G/H$ is equal to 1.

2. Elements of $C^{1}(X_{a}, G)$ derived from connection forms. We denote by X_{a} the associated principal bundle of ξ . The projection from X_{a} to X is denoted by $\pi = \pi_{a}$. The homeomorphism from $\pi^{-1}(U)$ to $U \times G$ is denoted by $\varphi_{\sigma} \cdot \varphi^{-1}(x, a)$ is denoted by $\varphi_{\sigma}^{-1}(x)(a)$. Then setting

$$lpha c = \varphi_U^{-1}(x)(ac), \ lpha = \varphi_U^{-1}(x)(a) \in X_d, \ c \in G,$$

G operates on X_{G} .

Theorem 2. We set

$$(1) \qquad C^{1}(X_{\mathfrak{G}}, G)_{\mathfrak{G}} = \{s \mid s \in C^{1}(X_{\mathfrak{G}}, G), s(\alpha a, \beta b) = a^{-1}s(\alpha, \beta)b, \\ \alpha, \beta \in X_{\mathfrak{G}}, a, b \in G\}.$$

Then there is a bijection $t=t_{d}$ between $H^{0}(X, \mathcal{G}^{1})$ and $C^{1}(X_{d}, G)_{d}$.

Proof. If $\{s_{v}\}$ belongs in $H^{0}(X, \mathcal{G}^{1})$, then we set

 $t({s_U})(\varphi_U(x)^{-1}(a), \varphi_U(y)^{-1}(b)) = a^{-1}s_U(x, y)b.$

By the definition of \mathcal{G}^1 , this definition of t does not depend on the choice of U and $t(\{s_U\})$ belongs in $C^1(X_G, G)_G$. On the other hand, if s belongs in $C^1(X_G, G)_G$, then setting

 $t^{-1}(s)_{U}(x, y) = as(\varphi_{U}^{-1}(x)(a), \varphi_{U}^{-1}(y)(b))b^{-1},$

 $t^{-1}(s)_{U}(x, y)$ does not depend on the choice of a, b and $\{t^{-1}(s)_{U}\}$ belongs in $H^{0}(X, \mathcal{Q}^{1})$. Moreover, we have $tt^{-1}(s)=s, t^{-1}t(\{s_{U}\})=\{s_{U}\}$. Hence we obtain the theorem.

Corollary. Setting

$$T^{1}(X_{g}, G) = \{r \mid r \in C^{1}(X_{g}, G), r(\alpha a, \beta b) = a^{-1}r(\alpha, \beta)a\},\$$

we get

 $if C^{1}(X_{G}, G)_{G} \neq \emptyset.$

Note. Similarly, we can prove that there is a bijection t_H between $H^{0}(X_{G/H}, \mathcal{Q}^{1})$ and $C^{1}(X_G, G)_H$ for arbitrary subgroup H of G. Here $X_{G/H}$ is the associated G/H-bundle of ξ , $H^{0}(X_{G/H}, \mathcal{Q}^{1})$ is the set of connections of $\pi_{G/H}^{*}(\xi)$ and $C^{1}(X_G, G)_H$ is given by

$$C^{1}(X_{a}, G)_{H} = \{s \mid s \in C^{1}(X_{a}, G), s(\alpha a, \beta b) = a^{-1}s(\alpha, \beta)b, \ lpha, eta \in X_{a}, a, b \in H\}.$$

By theorem 1 and above note, we obtain (cf. [3]),

Theorem 4'. $X_{\mathfrak{g}}$ is induced from a covering space of $X_{\mathfrak{g}/\mathfrak{H}}$ if and only if $\{1\}$ belongs in $t_{\mathfrak{g}}^{-1}(C^{1}(X_{\mathfrak{g}}, G)_{\mathfrak{H}})$. Here $t_{\mathfrak{g}}$ means the bijection from $H^{0}(X_{\mathfrak{g}}, \mathcal{G}^{1})$ to $C^{1}(X_{\mathfrak{g}}, G)$. 3. Curvature form of a connection form. Lemma 3. X_g has a cross-section from X if and only if there exists a continuous function s: $X_g \rightarrow G$ such that

(3) $s(\alpha a) = s(\alpha)a, \alpha \in X_{G}, a \in G.$

Lemma 4. If $s_1, s_2: X_d \rightarrow G$ satisfy (2), then setting

 $(4) s(\alpha, \beta) = s_1(\alpha)^{-1} s_2(\beta),$

 $s(\alpha, \beta)$ becomes a connection form of X.

Since G is a non-abelian group in general, although $C^r(X_G, G)$ and $\delta_r: C^r(X_G, G) \rightarrow C^{r+1}(X_G, G)$ are defined for all $r, \delta_{r+1}\delta_r \neq 1$ if $r \geq 1$ in general. But $\delta_1\delta_0$ is equal to 1 for all G. Strictly, $\delta_1 f$ is given by $(\delta_1 f)(x_0, x_1, x_2) = f(x_1, x_2)f(x_0, x_2)^{-1}f(x_0, x_1).$

We denote ker. δ_r by $Z^r(X_G, G)$.

Definition. If s belongs in $C^{1}(X_{g}, G)_{g}$, then we call $\delta_{1}s$ the curvature form of s.

By definition, if s is a connection form, then we get

(5) $(\delta_1 s)(\alpha a, \beta b, \gamma c) = b^{-1}(\delta_1 s)(\alpha, \beta, \gamma)b.$

Note. We define the sheaf $\mathcal{G}^{(2)} = \mathcal{G}^{(2)}(\xi)$ as follows.

 $\mathcal{G}^{(2)}$: the sheaf of germs of those maps $\{f_U\}, f_U \in C^2(U, G)$ and $g_{UV}(x_1)^{-1}f_U(x_0, x_1, x_2)g_{UV}(x_1) = f_V(x_0, x_1, x_2).$

Then we can define the map δ from $H^0(X, \mathcal{G}^1)$ to $H^0(X, \mathcal{G}^{(2)})$ and we call $\delta(\{s_U\})$ is the curvature form of $\{s_U\}$. Moreover, the following diagram is commutative

$$egin{array}{cccc} C^{\scriptscriptstyle 1}\!(X_{\mathscr{G}},\,G)_{\mathscr{G}} & \stackrel{\delta_1}{\longrightarrow} T^{\scriptscriptstyle 2}\!(X_{\mathscr{G}},\,G) \ t^{\uparrow} & t'^{\uparrow} \ H^{\scriptscriptstyle 0}\!(X,\,\mathcal{G}^{\scriptscriptstyle 1}) & \stackrel{\delta}{\longrightarrow} H^{\scriptscriptstyle 0}\!(X,\,\mathcal{G}^{\scriptscriptstyle (2)}), \end{array}$$

where $T^{2}(X_{a}, G)$ and t' are given by

 $T^{2}(X_{\mathfrak{g}}, G) = \{r \mid r \in C^{2}(X_{\mathfrak{g}}, G), r(\alpha a, \beta b, \gamma c) = b^{-1}r(\alpha, \beta, \gamma)b\},$

 $t'(\lbrace f_{\scriptscriptstyle U}
brace)(arphi_{\scriptscriptstyle U}(x)(a), \varphi_{\scriptscriptstyle U}(y)(b), \varphi_{\scriptscriptstyle U}(z)(c)) = b^{-1}f_{\scriptscriptstyle U}(x, y, z)b.$

Lemma 5. If η is an H-bundle and H is a subgroup of G, then to denote i the inclusion from H to G, we have the following commutative diagram.

$$egin{aligned} H^{\scriptscriptstyle 0}(X,\, {\mathcal G}^{\scriptscriptstyle 1}(i^*(\eta))) & \stackrel{\delta}{\longrightarrow} & H^{\scriptscriptstyle 0}(X,\, {\mathcal G}^{\scriptscriptstyle (2)}(i^*(\eta))) \ i^* & i^* & & & \\ H^{\scriptscriptstyle 0}(X,\, {\mathcal G}^{\scriptscriptstyle 1}(\eta)) & \stackrel{\delta}{\longrightarrow} & H^{\scriptscriptstyle 0}(X,\, {\mathcal G}^{\scriptscriptstyle (2)}(\eta)). \end{aligned}$$

Theorem 3. (cf. [2], theorem 2, [7], [8]). If the value of a curvature form of ξ belongs in H, a subgroup of G, then the connected component of the structure group of ξ is reduced to H.

Corollary. If ξ has a connection form which is a cocycle, then $X_{\mathcal{G}}$ is induced from a representation of $\pi_1(X)$ in G.

Similarly, if we use the notion of curvature forms, theorem 4' is refined as follows.

Theorem 4. $X_{\mathcal{G}}$ is induced from a covering space of $X_{\mathcal{G}/\mathcal{H}}$, where H is a subgroup of G, if and only if 1 belongs in $\delta_1(C^1(X_{\mathcal{G}}, G)_{\mathcal{H}})$, or equivalently

(6) $C^{1}(X_{a}, G)_{\mathbb{H}} \cap Z^{1}(X_{a}, G) \neq \emptyset$. 4. Associated vector bundle of a topological fibre bundle. To show the relations between above theory of connections and the theory given in [2], first we construct an associated vector bundle of ξ .

We denote by F the fibre of ξ and assume that F has sufficiently many continuous functions. We denote by C(F) the topological vector space over R consisted by all real valued continuous functions on Fwith compact open topology. The ring of all linear operators of C(F)is denoted by R(C(F)).

For $T \in R(C(F))$, $f_1, \dots, f_n \in C(F)$, a compact set K of F, we set $U(T, f_1, \dots, f_n, K, \varepsilon) = \{S \mid | (Tf_i)(x) - (Sf_i)(x) | < \varepsilon, x \in K, 1 \le i \le n\}$. Then taking $\{U(T, f_1, \dots, f_n, K, \varepsilon)\}$ to be open basis of R(C(F)), R(C(F)) becomes a topological ring. ($\lceil 6 \rceil$, § 33).

Lemma 6. For $a \in G$, $f \in C(F)$, we set (7) $(\iota(a)f)(x) = f(a^{-1}(x))$. Then $\iota(a)$ belongs in R(C(F)) and the map $\iota: G \rightarrow R(C(F))$ is a continuous monomorphism.

Note. ι is not a homeomorphism in general. But we obtain

Lemma 7. We assume that F is a C^r-class manifold and G is a group of C^r-diffeomorphisms of F with C^{r'}-topology. $(r' \le r)$. (cf. [1]). Here C^o-manifold, C^o-diffeomorphism, and C^o-topology mean topological manifold, homeomorphism and compact open topology. The topological vector space consisted by all C^{r'}-class functions on F with C^{r'}-topology is denoted by C^{r'}(F) and the ring of all linear operators of C^{r'}(F) is denoted by $R(C^{r'}(F))$. Then if we take $U(T, f_1, \cdots f_n, K, \varepsilon)$

$$=\{S \mid \mid D^p(Tf_i)(x) - D^p(Sf_i)(x) \mid < arepsilon, x \in K, \mid p \mid \leq r', 1 \leq i \leq n\}, \ p=(j_1, \cdots, j_n), \mid p \mid = j_1 + \cdots + j_n, D^p = rac{\partial^{\mid p \mid}}{\partial x_1^i 1 \cdots \partial x_n^j n}, D^0 f = f,$$

to be open basis of $R(C^{r'}(F))$, the map $\iota: G \rightarrow R(C^{r'}(F))$ defined by (7) is a homeomorphism.

In the rest, we denote the associated C(F)-bundle $(C^{r'}(F)$ -bundle) of ξ by $v(\xi) (v^{r'}(\xi))$, then by lemma 7, if ξ is an $H_0(n)$ -bundle $(H_0^{r,r'}(n)$ bundle (cf. [1])) then the correspondence $\xi \rightarrow v(\xi) (\xi \rightarrow v^{r'}(\xi))$ is a bijection.

5. Relations between the connections of this note and that of [2]. Since $v(\xi)$ is a vector bundle, we can define its s-cross-sections. ([2], $n^{\circ}2$). We can also define the addition of the elements of G and we get

Theorem 5. If $\{s_{\sigma}\}$ is a connection form of ξ , then setting $\{\theta_{\sigma}\} = \{s_{\sigma}-1\}$, we have

$$(8) \qquad (d+\theta_{\upsilon})f_{\upsilon} = \iota(g_{\upsilon\nu})(d+\theta_{\nu})f_{\nu},$$

for all $f_{\sigma} \in C^{*}(X, v(\xi)), s \ge 0$. Conversely, if the collection $\{\theta_{\sigma}\}, \theta_{\sigma} \in C^{1}(U, R(C(F)))$ satisfies (8) and the value of $1 + \theta_{\sigma}$ belongs in $\iota(G) = G$, then setting $s_{\sigma} = 1 + \theta_{\sigma}, \{s_{\sigma}\}$ belongs in $H^{\circ}(X, \mathcal{G}^{1})$ if ι is a homeomorphism.

Note. By the proof of theorem 1 of [2], we know that if X is a paracompact normal topological space, then there always exists a collection $\{\theta_{\sigma}\}, \theta_{\sigma} \in C^{1}(U, R(C(F)))$ which satisfies (8).

Since we obtain

 $(9) d\theta_{U} + \theta_{U}\theta_{U} = s_{U}(x_{0}, x_{1})s_{U}(x_{1}, x_{2}) - s_{U}(x_{0}, x_{2}),$

if $\{\theta_{\upsilon}\} = \{s_{\upsilon} - 1\}$, the definition of the curvature form of a connection form must different from the definition of this note if we use the definition of curvature forms of [2]. But theorem 3 of this note and theorem 2 of [2] show that there must be relations between curvature forms defined by the right hand side of (9) and defined as $\delta_1(t(\{s_{\upsilon}\}))$. For example, we obtain

(10)
$$\delta_1(t(\{s_U\}))(x_0, x_1, x_2) = 1 \text{ if and only if } s_U(x_0, x_1)s_U(x_1, x_2) - s_U(x_0, x_2) = 0.$$

Definition. $\{\Theta_{\sigma}\} = \{d\theta_{\sigma} + \theta_{\sigma}\theta_{\sigma}\}$ is called a G-valued curvature form if the value of $1 + \Theta_{\sigma}$ belongs in G.

By lemma 5, theorem 3 and theorem 2 of [2], the definition that a curvature form to be G-valued does not depend on the definitions of curvature form.

6. Connection of microbundles and topological manifolds. By Kister's theorem ([4]), a topological microbundle $\mathfrak{X}([5])$ over a locally finite complex is induced from a unique $H_0(n)$ -bundle over X. Here $H_0(n)$ is the group of all homeomorphisms of \mathbb{R}^n which fix the origin with compact open topology. Therefore we consider $H_0(n)$ -bundles over X instead of microbundles over X. Then according to the definitions of this note, we can consider the connections of microbundles.

Definition. If X is a topological manifold, then a connection of the tangent microbundle of X([5]) is called a connection of X.

Although we don't know the existence of connections for microbundles, a GL(n, R)-bundle always has a connection form if X is a paracompact normal topological space. ([2], $n^{\circ}2$). Therefore we obtain by lemma 5 and theorem 3, (or theorem 2 of [2]),

Theorem 6. An $H_0(n)$ -bundle \mathfrak{X} over a simply connected paracompact normal topological space is induced from a vector bundle if and only if \mathfrak{X} has a connection form with matrix valued curvature form.

Corollary. A simply connected PL-manifold X can be given a smoothness structure if and only if X has a connection form with matrix valued curvature form.

This follows from theorem 6 and [5], theorem (5, 12).

Note. By lemma 7, the correspondence $\mathfrak{X} \to v(\mathfrak{X})$ is a bijection. But if we use $C'(\mathbb{R}^n)$, the Banach space consisted by the all bounded continuous functions on \mathbb{R}^n with norm $||f|| = \max_{x \in \mathbb{R}} n |f(x)|$, instead of $C(\mathbb{R}^n)$ and use the strong topology of $R(C'(\mathbb{R}^n))$, the ring of all linear operators of $C'(\mathbb{R}^n)$, then $\iota: H_0(n) \to R(C'(\mathbb{R}^n))$ is not continuous. In fact, we obtain

$$||\iota(a)-\iota(b)||\geq 1$$
,

for all $a, b \in H_0(n)$.

References

- Asada, A.: Contraction of the group of diffeomorphisms of Rⁿ. Proc. Japan Acad., 41, 273-276 (1965).
- [2] ----: Connection of topological vector bundles. Proc. Japan Acad., 41, 919-922 (1965).
- [3] Hirzebruch, F.: Neue Topologische Methoden in der Algebraische Geometry. Berlin (1956).
- [4] Kister, J. M.: Microbundles are fibre bundles. Ann. of Math., 80, 190-199 (1964).
- [5] Milnor, J.: Microbundles, Part I. Topology, 3, 53-80 (1964).
- [6] Neumark, M. A.: Normierte Algebren. Berlin (1959).
- [7] Nomizu, K.: Un théorèm sur les group d'holonomie. Nagoya Math. J., 10, 101-103 (1956).
- [8] ——: Lie Groups and Differential Geometry. Tokyo (1956).