29. On Differential Operators with
 Real Characteristics

By Hitoshi Kumano-go
Department of Mathematics, Osaka University
(Comm. by Kinjirô Kunugi, m.J.A., Feb. 12, 1966)

1. In the recent note [2] we constructed a wave operator of the form

$$
\begin{equation*}
L=\frac{\partial^{2}}{\partial t^{2}}-\frac{\partial^{2}}{\partial x^{2}}-\frac{\partial^{2}}{\partial y^{2}}-f \frac{\partial}{\partial t}-g \tag{1}
\end{equation*}
$$

where f and g are real valued infinitely differentiable functions in R^{3}, for which the local uniqueness of the Cauchy problem does not hold, if we give initial values on any domain on $S=\left\{(t, x, y) ; x^{2}+y^{2}=1\right\}$ and solve outward from S. A. Pliś [3], using the example of L. Hörmander [1], pp. 225, gave an example of differential equations possessing solutions with arbitrarily small supports.

In this note, by the method of A. Plis [3], we prove the following:
Theorem. Let $Q(\partial / \partial x)=Q\left(\partial / \partial x_{1}, \partial / \partial x_{2}\right)$ be a homogeneous differential operator of order $m(\geqq 1)$ in R^{2} and of the form

$$
\begin{equation*}
Q\left(\frac{\partial}{\partial x}\right)=\sum_{j+k=m} a_{j k} \frac{\partial^{m}}{\partial x_{1}^{j} \partial x_{2}^{k}} . \tag{2}
\end{equation*}
$$

Assume that there exist a real vector $N=\left(N_{1}, N_{2}\right) \neq 0$ such that $Q\left(N_{1}, N_{2}\right)=0$. Then there exist complex valued infinitely differentiable functions $b_{j k}(x)(j+k \leqq m)$ which vanish at the origin with all their derivatives, and the local uniqueness of the Cauchy problem for the operator

$$
\begin{equation*}
P\left(x, \frac{\partial}{\partial x}\right)=Q\left(\frac{\partial}{\partial x}\right)+\sum_{j+k \leq m} b_{j k}(x) \frac{\partial^{j+k}}{\partial x_{1}^{j} \partial x_{2}^{k}} \tag{3}
\end{equation*}
$$

does not hold for any smooth curve $\varphi(x)=0$ if $\varphi(0)=0$ and grad $\varphi(0) \neq 0$.

Remark. We shall prove that, for any $\varepsilon>0$, there exists a solution $u_{\varepsilon}(x)$ satisfying the equation $P(x, \partial / \partial x) u_{\varepsilon}(x)=0$ such that

$$
(0,0) \in \operatorname{supp} u_{\varepsilon}^{1)} \subset\left\{x ; \varphi(x) \geqq 0, x_{1}^{2}+x_{2}^{2}<\varepsilon^{2}\right\}
$$

This means that, for any domain Ω containing the origin, we can not give any boundary condition on the boundary of Ω such that we may determine a unique solution of $P(x, \partial / \partial x) u_{s}=0$.

Corollary. Let $M(\partial / \partial x)=M\left(\partial / \partial x_{1}, \cdots, \partial / \partial x_{\nu}\right)$ be a homogeneous differential operator of order $m(\geqq 1)$ in $R^{\nu}(\nu \geqq 3)$. Assume that

[^0]there exist non-zero real vectors $\xi^{\prime}=\left(\xi_{1}^{\prime}, \cdots, \xi_{\nu}^{\prime}\right)$ and $\xi^{\prime \prime}=\left(\xi_{1}^{\prime \prime}, \cdots, \xi_{\nu}^{\prime \prime}\right)$ such that $M\left(\xi^{\prime}\right) \neq 0$ and $M\left(\xi^{\prime \prime}\right)=0$. Then, there exist complex valued functions $B_{j_{1} \cdots j_{\nu}}\left(y_{1}, y_{2}\right) \in C^{\infty}\left(R^{2}\right), j_{1}+\cdots+j_{\nu} \leqq m$, whose derivatives all vanish at the origin, and for the operator
$$
L\left(x, \frac{\partial}{\partial x}\right)=M\left(\frac{\partial}{\partial x}\right)+\sum_{j_{1}+\cdots+j_{\nu} \leq m} B_{j_{1} \cdots j_{\nu}}\left(x \cdot \xi^{\prime}, x \cdot \xi^{\prime \prime}\right)^{2)} \frac{j_{1}+\cdots+j_{\nu}}{\partial x_{1}^{j_{1}} \cdots \partial x_{\nu}^{j_{\nu}}},
$$
the local uniqueness of the Cauchy problem does not hold for any surface $\left\{x ; \varphi\left(x \cdot \xi^{\prime}, x \cdot \xi^{\prime \prime}\right)=0\right\}$, where $\varphi\left(y_{1}, y_{2}\right)$ is of class $C^{1}\left(R^{2}\right)$ such as $\varphi(0,0)=0, \operatorname{grad} \varphi(0,0) \neq 0$.
2. Proof of Theorem. First we prove a lemma with a little modified form of A. Plis [3].

Lemma (A. Pliś). There exists a complex valued function $f(t, y)$ in $C^{\infty}\left(R^{2}\right)$, whose derivatives all vanish at the origin, such that, for any $\varepsilon>0$, and smooth function $\psi(t, y)$ such as $\psi(0,0)=0$ and grad $\psi(0,0) \neq 0$, we have a solution $w_{\varepsilon}(t, y)$ of the equation

$$
\begin{equation*}
\frac{\partial}{\partial t} w(t, y)=f(t, y) \frac{\partial}{\partial y} w(t, y) \tag{4}
\end{equation*}
$$

whose support contains the origin and is contained in

$$
\left\{(t, y) ; \psi(t, y) \geqq 0, t^{2}+y^{2}<\varepsilon^{2}\right\}
$$

Proof of Lemma. We follow the method of A. Plis [3]. L. Hörmander [1] constructed complex functions $u(t, y)$ and $a(t, y)$ of class $C^{\infty}\left(R^{2}\right)$ and vanishing for $t \leqq 0$, such that the equation $\partial / \partial t u(t, y)=\alpha(t, y) \partial / \partial y u(t, y)$ is satisfied and $\operatorname{supp} u=\{(t, y) ; t \geqq 0\}$. Setting

$$
v(\tau, \theta)=u\left(\tau-\theta^{2}, \theta\right), b(\tau, \theta)=\left(1-2 \theta a\left(\tau-\theta^{2}, \theta\right)\right)^{-1} a\left(\tau-\theta^{2}, \theta\right),
$$

we obtain an equation $\partial / \partial \tau v(\tau, \theta)=b(\tau, \theta) \partial / \partial \theta v(\tau, \theta)$. If $\tau<q$ for a constant $q>0$, we have $t+y^{2}=\left(\tau-\theta^{2}\right)+\theta^{2}<q$. Hence, for a sufficiently small fixed $q^{0}>0$, the complex functions $v(\tau, \theta)$ and $b(\tau, \theta)$ are of class C^{∞} in $\left\{(\tau, \theta) ; \tau \leqq q^{0}\right\}$ and vanish for $\tau \leqq \theta^{2}$, and supp v contains the origin. Let $A(s)$ be a function of class $C^{\infty}(R)$ such that $0 \leqq A(s) \leqq 1, A(s)=0$ for $|s| \geqq 1$ and $A(0)=1$. Consider the functions

$$
\begin{align*}
w\left(t, y ; t^{0}, y^{0} ; r\right) & =v\left(r A\left(\left(t-t^{0}\right) / r\right), y-y^{0}\right) \tag{5}\\
c\left(t, y ; t^{0}, y^{0} ; r\right) & =A^{\prime}\left(\left(t-t^{0}\right) / r\right) b\left(r A\left(\left(t-t^{0}\right) / r\right), y-y^{0}\right)
\end{align*}
$$

for $0<r<q^{0}$. Then, setting

$$
R\left(t^{0}, y^{0} ; r\right)=\left\{(t, y) ;\left|t-t^{0}\right| \leqq r,\left|x-x^{0}\right| \leqq r^{1 / 2}\right\}
$$

we have
(6) $\quad \phi^{3} \neq \operatorname{supp} w \subset R\left(t^{0}, y^{0} ; r\right), \operatorname{supp} c \subset R\left(t^{0}, y^{0} ; r\right)$, and w, c satisfy the equation

$$
\begin{equation*}
\frac{\partial}{\partial t} w\left(t, y ; t^{0}, y^{0} ; r\right)=c\left(t, y ; t^{0}, y^{0} ; r\right) \frac{\partial}{\partial y} w\left(t, y ; t^{0}, y^{0} ; r\right) \tag{7}
\end{equation*}
$$

[^1]Since $v(\tau, \theta)$ and $b(\tau, \theta)$ vanish for $\tau \leqq \theta^{2}$, we have

$$
\tau^{-M} \frac{\partial^{j+k}}{\partial \tau^{j} \partial \theta^{k}} v(\tau, \theta) \rightarrow 0, \tau^{-M} \frac{\partial^{j+k}}{\partial \tau^{j} \partial \theta^{k}} b(\tau, \theta) \rightarrow 0(\tau \searrow 0)
$$

uniformly for any fixed j, k, and $M>0$. Hence, remarking $r A\left(\left(t-t^{0}\right) / r\right) \leqq r$, we have by (5)

$$
\begin{align*}
& \frac{\partial^{j+k}}{\partial t^{j} \partial y^{k}} w\left(t, y ; t^{0}, y^{0} ; r\right) \rightarrow 0, \\
& \frac{\partial^{j+k}}{\partial t^{j} \partial y^{k}} c\left(t, y ; t^{0}, y^{0} ; r\right) \rightarrow 0
\end{align*}
$$

when $r \rightarrow 0$, uniformly in R^{2} for any fixed j and k. Now, we set

$$
R_{1, n}=R\left(n^{-1}, 0 ;|n|^{-5}\right), R_{2, n}=R\left(0, n^{-1} ;|n|^{-5}\right),(n= \pm 1, \pm 2, \cdots) .
$$

Then there exists a positive integer $n^{0}\left(\geqq q^{0-5}\right)$ such that
(9)

$$
R_{j, n \cap} R_{j^{\prime}, n^{\prime}}=\phi, \text { if }|n| \geqq n^{0}, \text { and }(j, n) \neq\left(j^{\prime}, n^{\prime}\right) .
$$

We set, for an integer $l\left(|l| \geqq n^{0}\right)$,

$$
w_{1, l}=\sum_{n=l}^{ \pm \infty} w\left(t, y ; n^{-1}, 0 ;|n|^{-5}\right), w_{2, l}=\sum_{n=l}^{ \pm \infty} w\left(t, y ; 0, n^{-1} ;|n|^{-5}\right),
$$

if $l \gtrless 0$ respectively and set

$$
f(t, y)=\sum_{|n| \geq n^{0}}\left\{c\left(t, y ; n^{-1}, 0 ;|n|^{-5}\right)+c\left(t, y ; 0, n^{-1} ;|n|^{-5}\right)\right\} .
$$

Then, by (6)-(9), we have $w_{j, l}\left(j=1,2,|l| \geqq n^{0}\right), f(t, y) \in C_{0}^{\infty}\left(R^{2}\right)$, (10) $\quad(0,0) \in \operatorname{supp} w_{j, l} \subset\left\{(t, y) ; t^{2}+y^{2}<4|l|^{-2}\right\}$
and every $w_{j, l}(t, y)$ satisfies the equation (4).
Now, let $\psi(t, y)$ be a function of class C^{1} in a neighborhood of the origin such that $\psi(0,0)=0$ and grad $\psi(0,0) \neq 0$. Then

$$
\psi(t, y)=\alpha t+\beta y+o\left(\sqrt{t^{2}+y^{2}}\right) \text { where }(\alpha, \beta) \neq 0 .
$$

Hence, for any $\varepsilon>0$, we can select $j(=1$ or 2$)$ and integer $l(|l| \geqq$ $\left.\operatorname{Max}\left\{n^{0}, 2 \varepsilon^{-1}\right\}\right)$ such that
$(0,0) \in \operatorname{supp} w_{j, l} \subset\left\{(t, y) ; \psi(t, y) \geqq 0, t^{2}+y^{2}<4|l|^{-2} \leqq \varepsilon^{2}\right\}$.
This completes the proof. Q.E.D.
Proof of Theorem. Take a real vector $\xi^{0}=\left(\xi_{1}^{0}, \xi_{2}^{0}\right) \neq 0$ such that $Q\left(\xi_{1}^{0}, \xi_{2}^{0}\right) \neq 0$, then ξ^{0} and N are linearly independent. If we transform the coordinates $\left(x_{1}, x_{2}\right)$ to (t, y) by the non-singular transformation: $t=\xi_{1}^{0} x_{1}+\xi_{2}^{0} x_{2}, y=N_{1} x_{1}+N_{2} x_{2}$, then the differential polynomial $Q\left(\xi_{1}, \xi_{2}\right)$ is transformed to $Q^{\prime}(\lambda, \eta)=Q\left(\xi_{1}^{0} \lambda+N_{1} \eta, \xi_{2}^{0} \lambda+N_{2} \eta\right)$ where (λ, η) corresponds to the differentiations $(\partial / \partial t, \partial / \partial y)$. Hence we have $Q^{\prime}(1,0)=Q\left(\xi_{1}^{0}, \xi_{2}^{0}\right) \neq$ 0 and $Q^{\prime}(0,1)=Q\left(N_{1}, N_{2}\right)=0$, consequently we can write $Q^{\prime}(\alpha, \eta)=$ $Q_{0}^{\prime}(\lambda, \eta) \lambda$ where $Q_{0}^{\prime}(\lambda, \eta)$ is differential polynomial homogeneous of order $m-1$. Set $P^{\prime}(t, y, \partial / \partial t, \partial / \partial y)=Q_{0}^{\prime}(\partial / \partial t, \partial / \partial x)(\partial / \partial t-f(t, y) \partial / \partial y)$ with the function constructed in Lemma. Then all the solutions $w(t, y)$ of the equation (4) necessarily satisfy the equation $P^{\prime}(t, y, \partial / \partial t, \partial / \partial y) w(t, y)=0$. Consequently we see that the local uniqueness of the Cauchy problem for the operator P^{\prime} does not hold for any curve $\psi(t, y)=0$ of Lemma. If we re-transform the coordinates (t, y) to $\left(x_{1}, x_{2}\right)$, we can easily see
that $P^{\prime}(t, y, \partial / \partial t, \partial / \partial y)$ is transformed to $P(x, \partial / \partial x)$ of the form (3) such as $b_{j k}(x)(j+k \leqq m)$ satisfy the conditions of Theorem, and that $\psi(t, y)$ is transformed to $\varphi\left(x_{1}, x_{2}\right)$ with one to one correspondence.
Q.E.D.

Proof of Corollary. We can linearly transform the coordinates $\left(x_{1}, \cdots, x_{\nu}\right)$ to ($t, y_{1}, \cdots, y_{\nu-1}$) such that the transformed differential polynomial $M^{\prime}\left(\lambda, \eta_{1}, \cdots, \eta_{\nu-1}\right)$ satisfies the conditions $M^{\prime}(1,0, \cdots, 0) \neq$ $0, M^{\prime}(0,1,0, \cdots, 0)=0$, and the planes $x \cdot \xi^{\prime}=0, x \cdot \xi^{\prime \prime}=0$ are transformed to the planes $t=0$ and $y_{1}=0$ respectively. Set $Q^{\prime}\left(\partial / \partial t, \partial / \partial y_{1}\right)=M^{\prime}(\partial / \partial t$, $\left.\partial / \partial y_{1}, 0, \cdots, 0\right)$, then we can write $Q^{\prime}\left(\partial / \partial t, \partial / \partial y_{1}\right)=Q_{0}^{\prime}\left(\partial / \partial t, \partial / \partial y_{1}\right) \partial / \partial t$ where $Q_{0}^{\prime}\left(\partial / \partial t, \partial / \partial y_{1}\right)$ is a homogeneous differential polynomial of order $m-1$. Next, with a function f defined in Lemma, we set $P^{\prime}\left(t, y_{1}, \partial / \partial t, \partial / \partial y_{1}\right)=Q_{0}^{\prime}\left(\partial / \partial t, \partial / \partial y_{1}\right)\left(\partial / \partial t-f\left(t, y_{1}\right) \partial / \partial y_{1}\right)$. Then, for the operator P^{\prime}, the local uniqueness of the Cauchy problem does not hold for any curve $\psi\left(t, y_{1}\right)=0$ satisfying the condition of Lemma. Considering $L^{\prime}(t, y, \partial / \partial t, \partial / \partial y) \equiv P^{\prime}\left(t, y_{1}, \partial / \partial t, \partial / \partial y_{1}\right)$, we can easily see that, for the operator L^{\prime}, the local uniqueness does not hold for any surface $\{(t, y)$; $\left.\psi\left(t, y_{1}\right)=0\right\}$ with the function ψ defined in the proof of Lemma, since the solution $w\left(t, y_{1}\right)$ of $P^{\prime} w=0$ is also the solution of $L^{\prime} w=0$ by considering as a function in R^{ν}. Consequently, re-transforming the coordinates $\left(t, y_{1}, \cdots, y_{\nu-1}\right)$ to (x_{1}, \cdots, x_{ν}), we get the desired operator $L(x, \partial / \partial x)$.
Q.E.D.

References

[1] L. Hörmander: Linear Partial Differential Operators. Berlin (1963).
[2] H. Kumano-go: On an example of non-uniqueness of solutions of the Cauchy problem for the wave equation. Proc. Japan Acad., 39, 578-582 (1963).
[3] A. Pliś: Homogeneous partial differential equations possessing solutions with arbitrarily small supports. Bull. Acad. Polon. Sci., Ser. 12, 205-206 (1964).

[^0]: 1) For a function $u(x), \operatorname{supp} u=$ the closure of $\{x ; u(x) \neq 0\}$.
[^1]: 2) For a real vector $\xi=\left(\xi_{1}, \cdots, \xi_{\nu}\right)$ and $x=\left(x_{1}, \cdots, x_{\nu}\right) \in R^{\nu}, x \cdot \xi$ denotes the inner product $x \cdot \xi=x_{1} \xi_{1}+\cdots+x_{\nu} \xi_{\nu}$.
 3) ϕ denotes the empty set.
