25. Axiom Systems of B-algebra. V

By Kashiko TANAKA

(Comm. by Kinjirô KUNUGI, M.J.A., Feb. 12, 1966)

In this note, we shall give a characterization of *B*-algebra by an algebraic formulation of an axiom system of propositional calculus by B. Sobociński.

We introduce a binary operation * and an unary operation \sim on X. Consider an abstract algebra $\langle X, 0, *, \sim \rangle$ satisfying the following conditions:

 $B 1 \quad x * y \leq x,$ $B 2 \quad (x * y) * (z * y) \leq (x * z) * y,$ $B 3 \quad x * y \leq \sim y * \sim x,$ $B 4 \quad 0 \leq x,$ $B 5 \quad x \leq y \text{ and } y \leq x \text{ imply } x = y,$ $B 6 \quad x * y = 0 \text{ if and only if } x \leq y$

(For details, see [1].)

The algebra $\langle X, 0, *, \sim \rangle$ is called a *B*-algebra.

By the same idea, we can formulate an axiom system by B. Sobociński as follows:

- $S \ 1 \quad x * y \leq \sim y,$
- S 2 $(x*y)*z \leq x$,
- S 3 $(x*(y*z))*(x*y) \leq x* \sim z$,

and B4, B5, B6.

In the case of propositional calculus, it is called the (S_1) -system.

We shall prove that two axiom systems are equivalent, therefore any *B*-algebra, hence a Boolean algebra is characterized by the above axiom S 1–3 and B 4–6.

First we shall show that the axioms of *B*-algebra are derived from the axioms of (S_i) -system.

In axiom S3, put x=(x*y)*z, y=x, then we have $((x*y)*z)*(x*z)*((x*y)*z)*x) \leq ((x*y)*z)*\sim z$. In axiom S1, put x=x*y, y=z, then we have $((x*y)*z)*\sim z=0$ by B6. Hence $((x*y)*z)*(x*z) \leq ((x*y)*z)*x$. The right side is equal to 0 by S2, then

 $(1) \quad (x*y)*z \leq x*z.$

In (1), put x=x*y, y=z, and $z=\sim y$, then by S1 and B6, we have $((x*y)*z)*\sim y=0$. Hence by B6,

 $(2) \quad (x*y)*z \leq \sim y.$

In S 3, put x=(x*y)*z, y=x*z, and z=y, then the right side is equal to 0 by (2) and the second term of left side is to 0 by (1). Therefore we have

(3) $(x*y)*z \leq (x*z)*y$.

In (3), put y=z, z=y, then $(x*z)*y \leq (x*y)*z$. Therefore by B5 we have

(4) (x*y)*z=(x*z)*y.

In S3, put x=x*z, then we have $((x*z)*(y*z))*((x*z)*y) \le (x*z)*\sim z=0$ by S1. Therefore $(x*z)*(y*z) \le (x*z)*y=(x*y)*z$ by (4). Hence we have

 $(5) (x*z)*(y*z) \leq (x*y)*z.$

In (5), put x * y = 0 and y * z = 0, then we have x * z = 0 by B 4 and B 6. Hence by B 6 we have the following important.

(6) $x \leq y$ and $y \leq z$ imply $x \leq z$.

In (4), put x=x*y, y=z, and z=x, then we have ((x*y)*z)*x=((x*y)*x)*z=0 by S2. Since z is arbitrary, $(x*y) \leq x$.

(7) $x * y \leq x$.

Let us put y=x in (7), and we use (4), then (x*x)*z=(x*z)*x=0. The element z is arbitrary, hence

(8) x * x = 0.

In (1), put z=y, y=z, then we have $(x*z)*y \le x*y$. By (4) and (5), $(x*z)*(y*z) \le (x*y)*z = (x*z)*y$. Hence we have $(x*z)*y \le (x*y)$ and $(x*z)*(y*z) \le (x*z)*y$. Therefore, by (6), we have

 $(9) \quad (x*z)*(y*z) \leq x*y.$

In (4), put $y = \sim y$, z = y, then $(x * \sim y) * y \leq (x * y) * \sim y = 0$ by S1. Hence we have

(10) $x \ast \sim y \leqslant y$.

In S3, put $x=x*\sim \sim x$, y=x, z=x, then we have $((x*\sim \sim x)*(x*x))*((x*\sim \sim x)*x) \leq (x*\sim \sim x)*\sim x$. The right side is equal to 0 by (10). Further we have $(x*\sim \sim x)*x=0$ by putting $y=\sim \sim x$ in (7), x*x is equal to 0 by (8). Therefore we have

(11) $x * \sim \sim x = 0.$

In S3, put $x = \sim x * y$, z = x, $y = \sim y$, then we have $((\sim x * y) * (\sim y * x)) * ((\sim x * y) * \sim y) \leq (\sim x * y) * \sim x = 0$. From (7) and S1, we have $(\sim x * y) * \sim x = 0$ and $(\sim x * y) * \sim y = 0$. Therefore

 $(12) \quad \sim x * y \leq \sim y * x.$

In (12), put $x = \sim x$, y = x, then by (8) we have

 $(13) \quad \sim \sim x * x = 0.$

Formulas (11), (13), and B5 imply

(14) $\sim \sim x = x$.

In axiom S3, put x=x*y, $y=\sim y$, and $z=\sim x$, then we have $((x*y)*(\sim y*\sim x))*((x*y)*\sim y) \leq (x*y)*\sim x=(x*y)*x=0$ by S1 and (14). The second term of left side is equal to 0 by S1. Hence (15) $x*y \leq \sim y*\sim x$.

Hence formulas (5), (7), and (15) are B2, B1, B3 respectively. Next we shall show that the axioms of (S_1) -system are derived from the axioms of B-algebra.

Suppose x * z = 0 in axiom B2, the right side is equal to 0 by B4. Further suppose z * y = 0 in B2, then we have the following two results,

Lemma 1. If x * z = 0, then (x * y) * (z * y) = 0, i.e. $x \leq z$ imply $x * y \leq z * y$.

Lemma 2. If x * z=0, z * y=0, then x * y=0, i.e. $x \leq z$, $z \leq y$ imply $x \leq y$.

In his paper (see [1]), K. Iséki has proved that the axiom system of *B*-algebra implies x * x = 0, $x = \sim \sim x$. Therefore we use these result;

(1') x * x = 0, (2') $x = \infty \infty^{\alpha}$

$$(2') \quad x = \sim \sim x.$$

In B3, put $x = \sim y$, $y = \sim x$, then $\sim y * \sim x \leq \sim \sim x * \sim \sim y = x * y$ by (2'). Hence we have $\sim y * \sim x \leq x * y$. Then by B3 and B5,

 $(3') \quad x * y = \sim y * \sim x.$

In axiom B1, put x=x*z, then $(x*z)*y \le x*z$. On the other hand we have $(x*y)*(z*y) \le (x*z)*y$. Hence by Lemma 2 we have,

 $(4') \quad (x*y)*(z*y) \leq x*z.$

In B2, put x=(x*y)*z, y=(x*y)*(z*y), z=(x*y)*z, then $((x*y)*z)*((x*y)*(z*y))*(((z*y)*z)*((x*y)*(z*y))) \leq (((x*y)*z)*((x*y)*z))*(((x*y)*(z*y)))$. The right side is equal to 0, because it is obtain by substituting x*y for x, z for y, and z*y for z in (4'). Therefore $((x*y)*z)*((x*y)*(z*y)) \leq ((z*y)*z)*((x*y)*(z*y))$. The right side equal to 0 by B1, B4. Hence,

(5') $(x * y) * z \leq (x * y) * (z * y).$

By (5'), B2 and Lemma 2 we have,

(6') $(x*y)*z \leq (x*z)*y$.

In (6'), put y=z, z=y, then $(x*z)*y \leq (x*y)*z$. By (6') and B 5 we have,

(7') (x*z)*y=(x*y)*z.

Let us put x=y*z in (1'), then (y*z)*(y*z)=0. In (7'), put x=y, y=y*z, then (y*z)*(y*z)=(y*(y*z))*z=0. Hence $y*(y*z) \le z$, and by Lemma 1 we have,

 $(8') \quad (y*(y*z))*\sim x \leq z*\sim x.$

In axiom B2, put $x = \sim (y * z)$, $y = \sim x$, and $z = \sim y$, then we have $(\sim (y*z)*\sim x)*(\sim y*\sim x) \leq (\sim (y*z)*\sim y)*\sim x = (y*(y*z))*\sim x \leq z*\sim x$ by (8'), (3'), and Lemma 2. Hence,

 $(9') \quad (\sim (y * z) * \sim x) * (\sim y * \sim x) \leq z * \sim x.$

 $(10') \quad x * y = \sim y * \sim x.$

No. 2]

By (10'), (2') we have $\sim (y * z) * \sim x = x * (y * z)$, $\sim y * \sim x = x * y$, and $z * \sim x = \sim \sim x * \sim z = x * \sim z$. Therefore by (9') we have, (11') $(x * (y * z)) * (x * y) \leq x * \sim z$.

By B1 and Lemma 1, we have $(x*y)*z \le x*z$. On the other hand $x*z \le x$ by B1. By Lemma 2 we have,

 $(12') \quad (x*y)*z \leq x.$

In axiom B1, put $x = \sim y$, $y = \sim x$, then we have $\sim y * \sim x \leq \sim y$. On the other hand $x * y \leq \sim y * \sim x$ by B3. Therefore by Lemma 2, we have,

(13') $x * y \leq \sim y$.

Hence formulas (11'), (12'), and (13') are S3, S2, and S1 respectively.

Therefore we can conclude that the axiom system of *B*-algebra is equivalent to the (S_i) -system.

Reference

 K. Iséki: Algebraic formulations of propositional calculi. Proc. Japan Acad., 41, 803-807 (1965).