25. Axiom Systems of B-algebra. V

By Kashiko Tanaka
(Comm. by Kinjirô Kunugi, m.J.A., Feb. 12, 1966)

In this note, we shall give a characterization of B-algebra by an algebraic formulation of an axiom system of propositional calculus by B. Sobociński.

We introduce a binary operation $*$ and an unary operation \sim on X. Consider an abstract algebra $\langle X, 0, *, \sim\rangle$ satisfying the following conditions:

B $1 x * y \leqslant x$,
B $2(x * y) *(z * y) \leqslant(x * z) * y$,
B $3 \quad x * y \leqslant \sim y * \sim x$,
B $40 \leqslant x$,
$B 5 \quad x \leqslant y$ and $y \leqslant x$ imply $x=y$,
B $6 x * y=0$ if and only if $x \leqslant y$
(For details, see [1].)
The algebra $\langle X, 0, *, \sim\rangle$ is called a B-algebra.
By the same idea, we can formulate an axiom system by B. Sobociński as follows:

$$
\begin{array}{lll}
S & 1 & x * y \leqslant \sim y, \\
S & 2 & (x * y) * z \leqslant x \\
S & 3 & (x *(y * z)) *(x * y) \leqslant x * \sim z
\end{array}
$$

and $B 4, B 5, B 6$.
In the case of propositional calculus, it is called the $\left(\mathrm{S}_{1}\right)$-system.
We shall prove that two axiom systems are equivalent, therefore any B-algebra, hence a Boolean algebra is characterized by the above axiom $S 1-3$ and $B 4-6$.

First we shall show that the axioms of B-algebra are derived from the axioms of $\left(\mathrm{S}_{1}\right)$-system.

In axiom $S 3$, put $x=(x * y) * z, y=x$, then we have $((x * y) * z) *$ $(x * z)) *(((x * y) * z) * x) \leqslant((x * y) * z) * \sim z$. In axiom $S 1$, put $x=x * y$, $y=z$, then we have $((x * y) * z) * \sim z=0$ by $B 6$. Hence $((x * y) * z) *(x * z) \leqslant$ $((x * y) * z) * x$. The right side is equal to 0 by $S 2$, then
(1) $(x * y) * z \leqslant x * z$.

In (1), put $x=x * y, y=z$, and $z=\sim y$, then by $S 1$ and $B 6$, we have $((x * y) * z) * \sim y=0$. Hence by $B 6$,
(2) $(x * y) * z \leqslant \sim y$.

In $S 3$, put $x=(x * y) * z, y=x * z$, and $z=y$, then the right side is equal to 0 by (2) and the second term of left side is to 0 by (1). Therefore we have
(3) $(x * y) * z \leqslant(x * z) * y$.

In (3), put $y=z, z=y$, then $(x * z) * y \leqslant(x * y) * z$. Therefore by $B 5$ we have
(4) $(x * y) * z=(x * z) * y$.

In $S 3$, put $x=x * z$, then we have $((x * z) *(y * z)) *((x * z) * y) \leqslant$ $(x * z) * \sim z=0$ by $S 1$. Therefore $(x * z) *(y * z) \leqslant(x * z) * y=(x * y) * z$ by (4). Hence we have
(5) $(x * z) *(y * z) \leqslant(x * y) * z$.

In (5), put $x * y=0$ and $y * z=0$, then we have $x * z=0$ by $B 4$ and $B 6$. Hence by $B 6$ we have the following important.
(6) $x \leqslant y$ and $y \leqslant z$ imply $x \leqslant z$.

In (4), put $x=x * y, y=z$, and $z=x$, then we have $((x * y) * z) * x=$ $((x * y) * x) * z=0$ by $S 2$. Since z is arbitrary, $(x * y) \leqslant x$.
(7) $x * y \leqslant x$.

Let us put $y=x$ in (7), and we use (4), then $(x * x) * z=(x * z) * x=0$. The element z is arbitrary, hence
(8) $x * x=0$.

In (1), put $z=y, y=z$, then we have $(x * z) * y \leqslant x * y . \quad$ By (4) and (5), $(x * z) *(y * z) \leqslant(x * y) * z=(x * z) * y$. Hence we have $(x * z) * y \leqslant(x * y)$ and $(x * z) *(y * z) \leqslant(x * z) * y$. Therefore, by (6), we have
(9) $(x * z) *(y * z) \leqslant x * y$.

In (4), put $y=\sim y, z=y$, then $(x * \sim y) * y \leqslant(x * y) * \sim y=0$ by $S 1$. Hence we have
(10) $x * \sim y \leqslant y$.

In $S 3$, put $x=x * \sim \sim x, y=x, z=x$, then we have $((x * \sim \sim x) *$ $(x * x)) *((x * \sim \sim x) * x) \leqslant(x * \sim \sim x) * \sim x$. The right side is equal to 0 by (10). Further we have $(x * \sim \sim x) * x=0$ by putting $y=\sim \sim x$ in (7), $x * x$ is equal to 0 by (8). Therefore we have
(11) $x * \sim \sim x=0$.

In S 3, put $x=\sim x * y, z=x, y=\sim y$, then we have $((\sim x * y) *$ $(\sim y * x)) *((\sim x * y) * \sim y) \leqslant(\sim x * y) * \sim x=0$. From (7) and $S 1$, we have $(\sim x * y) * \sim x=0$ and $(\sim x * y) * \sim y=0$. Therefore
(12) $\sim x * y \leqslant \sim y * x$.

In (12), put $x=\sim x, y=x$, then by (8) we have
(13) $\sim \sim x * x=0$.

Formulas (11), (13), and B5 imply
(14) $\sim \sim x=x$.

In axiom $S 3$, put $x=x * y, y=\sim y$, and $z=\sim x$, then we have $((x * y) *(\sim y * \sim x)) *((x * y) * \sim y) \leqslant(x * y) * \sim \sim x=(x * y) * x=0 \quad$ by $\quad S 1$ and (14). The second term of left side is equal to 0 by $S 1$. Hence
(15) $x * y \leqslant \sim y * \sim x$.

Hence formulas (5), (7), and (15) are $B 2, B 1, B 3$ respectively.
Next we shall show that the axioms of $\left(\mathrm{S}_{1}\right)$-system are derived
from the axioms of B-algebra.
Suppose $x * z=0$ in axiom $B 2$, the right side is equal to 0 by $B 4$. Further suppose $z * y=0$ in $B 2$, then we have the following two results,

Lemma 1. If $x * z=0$, then $(x * y) *(z * y)=0$, i.e. $x \leqslant z$ imply $x * y \leqslant z * y$.

Lemma 2. If $x * z=0, z * y=0$, then $x * y=0$, i.e. $x \leqslant z, z \leqslant y$ imply $x \leqslant y$.

In his paper (see [1]), K. Iséki has proved that the axiom system of B-algebra implies $x * x=0, x=\sim \sim x$. Therefore we use these result;
(1') $x * x=0$,
(2') $x=\sim \sim x$.
In $B 3$, put $x=\sim y, y=\sim x$, then $\sim y * \sim x \leqslant \sim \sim x * \sim \sim y=x * y$ by (2^{\prime}). Hence we have $\sim y * \sim x \leqslant x * y$. Then by $B 3$ and $B 5$,
(3') $x * y=\sim y * \sim x$.
In axiom $B 1$, put $x=x * z$, then $(x * z) * y \leqslant x * z$. On the other hand we have $(x * y) *(z * y) \leqslant(x * z) * y$. Hence by Lemma 2 we have,
(4') $(x * y) *(z * y) \leqslant x * z$.
In $B 2$, put $x=(x * y) * z, \quad y=(x * y) *(z * y), \quad z=(x * y) * z$, then $((x * y) * z) *((x * y) *(z * y)) *(((z * y) * z) *((x * y) *(z * y))) \leqslant(((x * y) * z) *$ $((z * y) * z)) *((x * y) *(z * y))$. The right side is equal to 0 , because it is obtain by substituting $x * y$ for x, z for y, and $z * y$ for z in (4^{\prime}). Therefore $((x * y) * z) *((x * y) *(z * y)) \leqslant((z * y) * z) *((x * y) *(z * y))$. The right side equal to 0 by $B 1, B 4$. Hence,
($\left.5^{\prime}\right) \quad(x * y) * z \leqslant(x * y) *(z * y)$.
By (5^{\prime}), B 2 and Lemma 2 we have,
($\left.6^{\prime}\right)(x * y) * z \leqslant(x * z) * y$.
In (6^{\prime}), put $y=z, z=y$, then $(x * z) * y \leqslant(x * y) * z . \quad$ By (6^{\prime}) and $B 5$ we have,
($\left.7^{\prime}\right) \quad(x * z) * y=(x * y) * z$.
Let us put $x=y * z$ in $\left(1^{\prime}\right)$, then $(y * z) *(y * z)=0$. In ($\left.7^{\prime}\right)$, put $x=y, y=y * z$, then $(y * z) *(y * z)=(y *(y * z)) * z=0$. Hence $y *(y * z) \leqslant z$, and by Lemma 1 we have,
($\left.8^{\prime}\right)(y *(y * z)) * \sim x \leqslant z * \sim x$.
In axiom $B 2$, put $x=\sim(y * z), y=\sim x$, and $z=\sim y$, then we have $(\sim(y * z) * \sim x) *(\sim y * \sim x) \leqslant(\sim(y * z) * \sim y) * \sim x=(y *(y * z)) * \sim x \leqslant z * \sim x$ by (8^{\prime}), (3^{\prime}), and Lemma 2. Hence,
($\left.9^{\prime}\right) \quad(\sim(y * z) * \sim x) *(\sim y * \sim x) \leqslant z * \sim x$.
In axiom $B 3$, put $x=\sim y$ and $y=\sim x$, then $\sim y * \sim x \leqslant \sim \sim x *$ $\sim \sim y=x * y$ by (2^{\prime}). Hence we have $\sim y * \sim x \leqslant x * y$ and $x * y \leqslant \sim y * \sim x$ by axiom $B 3$. Therefore we have $x * y=\sim y * \sim x$ by axiom $B 5$.
(10') $x * y=\sim y * \sim x$.

By $\left(10^{\prime}\right),\left(2^{\prime}\right)$ we have $\sim(y * z) * \sim x=x *(y * z), \sim y * \sim x=x * y$, and $z * \sim x=\sim \sim x * \sim z=x * \sim z$. Therefore by (9^{\prime}) we have,
(11') $\quad(x *(y * z)) *(x * y) \leqslant x * \sim z$.
By $B 1$ and Lemma 1 , we have $(x * y) * z \leqslant x * z$. On the other hand $x * z \leqslant x$ by $B 1$. By Lemma 2 we have,
(12') $(x * y) * z \leqslant x$.
In axiom $B 1$, put $x=\sim y, y=\sim x$, then we have $\sim y * \sim x \leqslant \sim y$. On the other hand $x * y \leqslant \sim y * \sim x$ by $B 3$. Therefore by Lemma 2, we have,
(13') $\quad x * y \leqslant \sim y$.
Hence formulas (11^{\prime}), (12^{\prime}), and (13^{\prime}) are $S 3, S 2$, and $S 1$ respectively.

Therefore we can conclude that the axiom system of B-algebra is equivalent to the $\left(\mathrm{S}_{1}\right)$-system.

Reference

[1] K. Iséki: Algebraic formulations of propositional calculi. Proc. Japan Acad., 41, 803-807 (1965).

