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1. It is well known that the analyses of two-dimensional
acoustic and electromagnetic fields are reduced to that of the
Helmholtz equation

(1) du+ku=0,
where # is a velocity potential in the case of acoustics and is a 2-
component of electric or magnetic fields in the case of electro-
magnetism. 4=0%/0x*+0%/0y*, k* (Im. k<0) is a constant, and a
factor e”**it ig supressed throughout. The boundary conditions

(2) =0,
or

ou

(3) i 0
is prescribed on a given boundary L, where n is a given unit normal
on L., Further, % is required to satisfy the radiation condition at
infinity.

When L is a closed contour, the above mentioned problems have
long been a subject of many investigations, and (1) has been solved
by various techniques, In fact, when L is of particular geometry,
say a whole circle or a whole straight line, (1) has been solved by
means of a Fourier-series or a Fourier transform technique, and
when L is of semi-infinite extent, it has been solved by a Wiener-
Hopf technique [1]. When L is a closed contour of a general
geometry, then (1) has been converted into a second kind integral
equation of Fredholm over L, which may be solved by a conventional
way.

However, when L is open, that is, when L is an open arc or a
union of open ares, say a circle or a line with arbitrary slots, no
rigorous and general analysis has been studied on (1), and the
problems have usually been solved approximately assuming that there
is only one narrow slit in the boundary and that the distribution
of field components in the slit is known [27], [3]. Since we find a
lot of counterparts of the problems in practical fields, for example,
in a theory of a slotted antenna and a leaky waveguide, a mathe-
matical theory of the problems is worth studying, while the theory
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itself is of interest from a mathematical point of view. So, it is
the purpose of this paper to show how to solve (1) rigorously and
generally when L is a union of arbitrary number of arbitrary (but
smooth) ares.

2. To begin with, the boundary condition (2) will be considered.

v
Suppose that L=31L; where L; is a piecewise smooth, non-

intersecting open are, §ﬁf>pose that C;=C} +C; + C5 is a closed contour
which encloses L; in it, where respectively, C; and C; are placed
close to L in plus and minus sides of L with respect to n, and C} is
circular ares of small radius surrunding the end points of L;. Then,
With help of the Green formula applied to a domain bounded by

C= ZC,, u(x) at a point « in the domain is represented by a line

1ntegral over C, which is reduced, in the limit as C* tend to L and
when the radius of C} tends to zero, to

(4) u(x)‘—-‘gLT(y)Ho(k | @ —y [) ds, —u*(), xe L,

by virtue of (2), under the assumption that the integrals over all
of C} vanish, In (4), y is a point on L, H(k|x—y|) is the zeroth
order Hankel function of the second kind, |x—y | is the distance
between x and y, u*(x) is a given primary field, and = is a unknown
function which is the difference of the limiting values of the normal
derivatives of u in the negative and positive sides of L. Again by
virtue of (2), (4) is reduced to

(5) SLT(y)Ho(k | @ —y [ds,=u*(x), welL

as ¢ L tends to a point © on L, which is a Fredholm integral
equation of the first kind, the kernel of which has a weak singularity.

As mentioned above, we have assumed, when (4) was derived,
that integrals over small circles C} around end points of L disappear.
We can prove that this is equivalent to take the edge conditions at
the end points ¢; (=1, 2, -+, 2v) into account; (6) t(y)=o(| y—ec; |~"?).
It is also proved that this condition is equivalent to the conventional
one derived from the requirement of finite energy at c;.

Conversely, it is proved that if w is defined by (4) by the sub-
stitution of a solution 7 of (5) which satisfies (6), then u is the exact
solution of the original problem, that is, the u satisfies (1) when
x¢ L, (2) when xe€ L, (6) when x—c¢, and the radiation condition at
infinity. Therefore, (5) is our fundamental equation, the solution
of which will be obtained in section 4.

3. Next, the boundary condition (3) will be consi(}‘ered. Suppose

that L° is a union of arbitrarily chosen v ares; L°=31L5, such that
=1
C=L+L° is a piecewise smooth, non-intersecting, closed contour.
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Let n be a unit normal on C and let S~ and S* be domains bounded
by C which exist in negative and positive sides of C respectively
with respect to n. Assume that, G*(x, y) and G~(«, y) are functions
of # and y which are regular in S+ and S~ respectively and satisfies
(1) there when x=y, G*(x, y)——3 log | *—y | when x—y, and

0 Gz, y)=0
on,

when x+#y and yeC.
Then, the Green formula applied to v and G* in S*, togetherwith

the boundary condition (3), leads to integral representations of u(x),
respectively, for xe S* and for x €S, which are

(1) w@)= | W)G@, v)ds,~u*(@), wes,

w@=| 7W)G-@, v)ds,—u*@), ve s,
where 7(y) is the values of du/on on L°, and u**(x) are given primary
fields in S*. Note that u and ou/on in S* should be continuous when
they traverse L°; (8) wut=wu", (du/on)*=(ou/on)~ on L°,

An integral equation for the unknown funection 7z in (7) is
derived by tending xe S* to a point xe L° in (7) and by taking
conditions (8) into aceount, which is

(9) | i@ n+ 6@ s —u@-urt@),  ael

Converself, if w is defined by (7) with a solution 7 of (9), then
we can prove that u is the required solution, that is, it satisfies all
of (1), (3), (6), (8) and the radiation condition at infinity. Therefore
(9) is the fundamental equation for the original problem in this case.
Note that (9) is essentially the same as (5), because the singularity
of the kernel of (9) is the same as that of (5).

4, The fundamental equation in cases of (2) and (8), which are
formally the same and are equivalent to

10) 2| =w)log klz—ylds,~u*(@)— | =@h(k|s—y|)ds,, weL,

where & is a given kernel, the second derivative of which is inte-
grable over L, and where u*(x) is a given analytic funection, is
considered in the following.

On taking the tangential derivative with respect to @, (10) is
transformed to

(1) L1208 ar=s00),
)z {—2
where z and { are complex variables corresponding to points « and

y respectively, a(z)=z§—,z)and f(z) is
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(12)
—1 ou* 1 nO =1z n, 1 N ds
F@=0)= s Bt | T AT 0, )+ s, o)}
In (12), s and s’ are arc lengths on C corresponding to points « and
y respectively, (s, s') is an angle sustained by the vector zy with
respect to a fixed direction, say the x-axis in a xy-plane, and h(s, s)
is the function of s and s’ corresponding to A(k|xz—y|).
It is known [4], [5], that a solution of (11) is
1 o@=Xef{L] L L& arSeel,
w1 Jr {—2 X(C) =0
where the notations are the same as those in [5]. When transformed
back to the original variables # and y, (13) is

T(S) . ’ ’ r_
(14) T K, s =009,
where
’ _i_ 1 _a_ —1 5 ’ _1_ ’
(15) K(s,5)=-1 SL S CEEREO (%{ Lo, )+ k(t,s)}dt.
_ -1 1 out =
9= 50 SLX’(t){z(t)—z(s)} 5 G2 Pane):

(14) is a second kind integral equation of Fredholm, the kernel
K(s, s’) of which is shown to be gSL | K(s, 8') |*dsds’<< oo, hence it is
solvable by a conventional way.

In cases where h(k|x—y|)=h(s, s)=h(s—s"), (10) is solved
directly without refering to (14). Actually, when L is composed of
circular ares, (10) is shown to reduce to the fundamental equation
in [5], where it has been solved directly by the generalized formula
of (13). Results similar to that in [5] will be shown in the follow-
ing papers for the cases of a grating of plane strips, ete. The
results in this paper, which is a résumé of the work, will appear,
in its full text, in some journal later,
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