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18. An Extension of Certain Quasi.Measure

By Munemi MIYAMOTO
Department of Pure and Applied Sciences, University of Tokyo

(Comm. by Zyoiti SUE’UNA, M.J.A., Feb. 12, 1966)

1. Introduction. In 1956, I. M. Gelfand and A. M. Yaglom
3 pointed out importance of probability-theoretical treatments of
certain partial differential equations. It would be interesting to
construct (signed) measures on function spaces which stand in the
same relation to some partial differential equations as the Brownian
motion does to the heat equation. Let us consider the Cauchy
problem for an equation:

( 1 u u u (a> 0).
3 ax/b ..x

The solution u with an initial value f is given by

where
1 e_(+e)da(t,

Let 9 be a function space with a coordinate mapping xt. It is
natural to define a measure P of a cylinder set C={w" (x(w),
xt(w),..., xt,(w))e F} in 9 as follows;

where 1, 0NNN NNT and FCR. It is easy to see
that P is well defined on the algebla eonsisting of all eylinder
sets end that ig is a finitely additive signed measure on . We
eall P a qi-mefe eorresondin to the equation (1).

Kolmogorov’s extension theorem (el. g) shows that if P is

nonneative, then P has the extension to the -algebra generated
by . Bu in our ease ig turns out tha P may aetually be negative
and that its total variation is infinite. herefore P ean not be
extended to . his faet was shown in 1960 by V. Yu. Krylov
for a wider class o quasi-measures. At the resent time we know
some sueieng eonditions in order that a quasi-measure may be
extended to a a-additive signed measure, whieh we will eall

In this noe we try to obtain a reasonable extension

1) Throughout this note, a positive constant T is fixed.
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an algebra wider than . Let us consider a system of equations:

2 )
Su % +(u-u),t a x

where a, a > 0 and

Z_ (a-b)aa /_ (a-b)aa..
a(-) a(-)

Eliminating u, we get

a U_a(1 ) u u u u
aa Ot + + +a b O.

a 8tSxi 8t 8x 8x

Formally, we obtain the equation (1) by sending off a and a to
the infinity. On the other hand, it will be proved that there exists
a Mrkovian system P((Z on the state space {1, 2} R corresponding
to (2). Thus the quasi-measure P is approximated by Markovian
systems.

The procedure to approximate the equation (1) by the system (2)
was suggested in the course o discussion with M. Nagasawa on an
unpublished note o N. Ikeda, which gives a probabilistie treatment
to the transport problem.

2. Construction of the Markovian system. In this section
we construct a Markovian system corresponding to (2). We write

(1 i

,, ,o, { -)--Because max P(t)] < exp 2t.max / e()’t there exists a
./=1,2 k--i .-.------i, ,?.

Markovian system (t, PJ)) with the space 2-{1, 2}[’) of elementary
events, such that

(t) k <

By (t, P), we denote the one-dimensional rownin motion defined

on the space 9 o continuous paths with the generator x
Let S (8,t) ()- (

_(,) P )x P, and-2x 2.. We get a Markovian
system (St, ( - defined on 9 with the state space {1 2}R As is1"(’,)1

easily seen, the Markovian system corresponds to a system of equations:

2) Theorem 1 in _7 holds not only for contraction semi-groups, but also for
semi-groups Tt for which II T II =< dt.
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u u + fl_ (u_u)t x
Applying to t Volkonskii’s random time change (z2. [8) induced

by a positive additive functional (O,)-ds, we get a Markovian

system (z), (.(),) which corresponds to (2). Let 9 be the set of all
functions w(t)=(w(t), w(t)) in [{1, 2} R) with the continuous
second coordinate w(t). Let zt(w)(0t(w), xt(w))=w(t), and let

()We obtain a signed measure (,) oa 9. Thus we have
Lemma 1. There exists a Markovian system (zt, P)) corre-

sponding to (2), which is equivalent to (5, .).
It is essential for our argument that zt does not depend on the

parameter a, while z) does. As for practical calculations, however,
we utilize z), because the construction of the latter is clearer than
that of the former,

Let be the algebra consisting of all cylinder sets generated
by xt and let be the smallest a-algebra including

Lemma 2. We write
B={w:xt(w) is differentiable at some t},

B={w" lim x(w)--x(w)}
[x(w)--x(w)

[-
+ for some s}.

r(,B--0 fo B eh h BBUBUB.
Proof is based on general properties

3).
3. Approximation of the quasi.measure. he solution

the Cauehy roblem for the system (2) with an initial value f is
expressed in the form;

( (,  -v)t v
where

with

Yjk -- ttjk

3) We always use a conventional notation us(t, x) in place of u(t, (3", x)).
4) We write a(-) for a. (cf. the preceding footnote).

p(a)5) The Markovian system (zt, (j,)) gives an affirmative answer to the
question propounded by Yu. L. Daletskii and S. V. Fomin [2 whether there
exists a measure which may actually be negative.
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()($, )) exp { (-- 012-- fl /31

Concerning we have followingYk
Lemma 3. If and + wish =o(), then

g)(t, x)O.
An elementary but somewhat complicated calculationProof.

shows that

)(,, )- 1
p(+)_ p(_o)

[{P(:) +a +Z}e.(+) {p(2) +

p(2)
where

1 _{(+)+}_4{+}].p)=[--{(+)+ }+
When and T + , hen p2()-a*-b and pL()-/a.
Therefore if and T + with =o(), then

and the others vanish. Thus we have
0>(, )e-**+> and 0:’(, )0.

From Lemma 8 it follows
Lemma 4. For evez A e ,

limP A3 P[A3,

where lim means he imi abna he wa soA Aa ,
-o() and P s he qasi-measre defined

We write

={A e lim P<%[A3 exists for every },

PA- lim --<,A3 for A e .
Then we have

Theorem. . P an extension of he qasi-measre
o .

is a qasi-alebra, i.e., it possesses the following properties;
i) 9, e.
ii) If Ae, then 9Ae.
iii) If AandB, thenABisequivalent to A
4. Some popeties of P,. From Lemma 2 follows immediately
Poposition 1. Ever B Aa BCB B B belongs

o and he eqali P,B3=O Aods, where B,B, and B are
hose of Lemma .
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An analogous result is anounced by V. Yu. Krylov
Let a be the first passage time to the origin, i.e.,

a(w)= inf {; (w)=0}.
As to a, we have

Poposition 2. Fo any Bovel se$ 1" in R and for any
{ e F, a >} and {e l"} belong o X. Pe dy, a> and

Pe dy ave he fundamenSal solu$ions of initial-boundary value
problems for he equation (1) for x>O wi$h boundary conditions
u(, 0)-0 and u(, 0)=u(0, 0) respectively.

Proof. It is easy to see that

=1

from which the result follows.
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