57. On the Strong (L) Summability of the Derived Fourier Series

By O. P. Rai
Department of Mathematics, University of Saugar, Saugor (M.P.), India (Comm. by Kinjirô Kunugi, m.J.A., March 12, 1966)

1. In a recent paper, Borwein [1] has constructed a new method of summability for an infinite sequence $\left\{s_{n}\right\}$. He defines a sequence $\left\{s_{n}\right\}$ to be summable by the logarithmic method of summability or summable (L) to the sum s if, for x in the interval $(0,1)$,

$$
\begin{equation*}
\lim _{x \rightarrow 1-0} \frac{1}{\log (1-x)} \sum_{n=1}^{\infty} \frac{s_{n}}{n} x^{n}=s \tag{1.1}
\end{equation*}
$$

It is known [3] that this method includes the Abel method. Recently K. Ishiguro [4] proved that if $\left\{s_{n}\right\}$ is summable by Riesz logarithmic mean of order one, it is also summable (L) to the same sum, but the converse is not true.

A series $c_{0}+c_{1}+c_{2}+\cdots$ is said to be strongly summable $(c, 1)$ or summable $[c, 1]$ to the sum s, if

$$
\begin{equation*}
\sum_{\nu=0}^{n}\left|s_{\nu}-s\right|=o(n), \quad \text { as } n \rightarrow \infty, \tag{1.2}
\end{equation*}
$$

s_{ν} being the sum of the first $(\nu+1)$ terms of the series. The series is said to be strongly summable by Riesz logarithmic mean of order one or summable $[R, \log n, 1]$ to the sum s, if

$$
\begin{equation*}
\sum_{\nu=0}^{n} \frac{\left|s_{\nu}-s\right|}{\nu}=o(\log n), \quad \text { as } n \rightarrow \infty . \tag{1.3}
\end{equation*}
$$

We define an analogue for strong summability of (L) summability method as follows:

Definition. A series $\sum_{n=0}^{\infty} c_{n}$ with the sequence of partial sum $\left\{s_{n}\right\}$ is said to be summable by strong (L) summability to the sum s if

$$
\begin{equation*}
\sum_{\nu=1}^{\infty} \frac{x^{\nu}\left|s_{\nu}-s\right|}{\nu}=o\{\log (1-x)\}, \quad \text { as } x \rightarrow 1 \tag{1.4}
\end{equation*}
$$

for x in the open interval $(0,1)$.
2. Suppose that the function $f(t)$ is Lebesgue integrable over the interval $(0,2 \pi)$ and periodic with period 2π. Let the Fourier series associated with function $f(t)$ be

$$
\begin{equation*}
\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n t+b_{n} \sin n t\right)=\sum_{1}^{\infty} A_{n}(t) . \tag{2.1}
\end{equation*}
$$

The series

$$
\begin{equation*}
\sum_{n=1}^{\infty} n\left(b_{n} \cos n t-a_{n} \sin n t\right)=\sum_{1}^{\infty} n B_{n}(t) \tag{2.2}
\end{equation*}
$$

which is obtained by differentiating the series (2.1) term by term, is called the derived Fourier series of $f(t)$.

We write

$$
\begin{aligned}
& \psi(t)=\frac{1}{2}\{f(\xi+t)-f(\xi-t)\} \\
& g(t)=\frac{1}{2}\left\{\psi(t)-t f^{\prime}(\xi)\right\}
\end{aligned}
$$

where $f^{\prime}(\xi)$ denotes the first generalised differential coefficients of $f(t)$ at $t=\xi$.

For the first time Prasad and Singh [5] gave criteria for the strong summability of the derived Fourier series. They proved the following:

Theorem A. If $f(t)$ be a continuous function of bounded variation and if for some value of ξ and for some $\varepsilon>0$

$$
\begin{equation*}
\int_{0}^{t}|d g(u)|=o\left\{\frac{t}{(\log 1 / t)^{1+\varepsilon}}\right\}, \quad \text { as } t \rightarrow 0 \tag{2.3}
\end{equation*}
$$

then

$$
\begin{equation*}
\sum_{\nu=1}^{n}\left|s_{\nu}(\xi)-f^{\prime}(\xi)\right|=o(n) . \tag{2.4}
\end{equation*}
$$

Further Chow [3] has localised and generalised the above theorem and proved the following

Theorem B. If

$$
\begin{equation*}
\sum_{\nu=1}^{n} \nu\left|B_{\nu}(\xi)\right|=o(n) \tag{2.5}
\end{equation*}
$$

(2.6) the function $\frac{\psi(t)}{t}$ is of bounded variation in a neighbourhood of $t=0$, then (2.4) holds.

In the subsquent section we shall investigate the strong (L) summability of the derived Fourier series. In fact we prove:

Theorem C. If

$$
\begin{equation*}
\sum_{\nu=1}^{n} x^{\nu}\left|B_{\nu}(\xi)\right|=o\{\log (1-x)\}, \quad x \rightarrow 1 \text { in } 0<x<1 \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\varepsilon(t)=\int_{t}^{\pi} \frac{|d g(u)|}{u}=o\left(\log \frac{1}{t}\right) \tag{2.8}
\end{equation*}
$$

then

$$
\begin{equation*}
\sum_{\nu=1}^{\infty} \frac{x^{\nu}\left|s_{\nu}(\xi)-f^{\prime}(\xi)\right|}{\nu}=o\{\log (1-x)\} \tag{2.9}
\end{equation*}
$$

It should be noted here that (2.8) implies that

$$
\begin{equation*}
\int_{0}^{t}|d g(u)|=o\left(t \log \frac{1}{t}\right) \tag{2.10}
\end{equation*}
$$

3. Proof of theorem C. We have

$$
\begin{aligned}
s_{n}(\xi) & =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\{\frac{d}{d \xi} \frac{\sin \left(n+\frac{1}{2}\right)(\xi-u)}{\sin \frac{1}{2}(\xi-u)}\right\} f(u) d u \\
& =-\frac{1}{2 \pi} \int_{0}^{2 \pi} f(u)\left\{\frac{d}{d u} \frac{\sin \left(n+\frac{1}{2}\right)(\xi-u)}{\sin \frac{1}{2}(\xi-u)}\right\} d u \\
& =-\frac{1}{2 \pi} \int_{0}^{2 \pi}\{f(\xi+t)-f(\xi-t)\}\left\{\frac{d}{d t} \frac{\sin \left(n+\frac{1}{2}\right) t}{\sin t / 2}\right\} d t .
\end{aligned}
$$

Integrating by parts the right hand side of (3.1), we obtain

$$
\begin{aligned}
s_{n}(\xi) & =\frac{1}{2 \pi} \int_{0}^{\pi} \frac{\sin \left(n+\frac{1}{2}\right) t}{\sin t / 2} d\{f(\xi+t)-f(\xi-t)\} \\
& =\frac{1}{2 \pi} \int_{0}^{\pi} \frac{\sin \left(n+\frac{1}{2}\right) t}{\sin \frac{1}{2} t} d g(t)+f^{\prime}(\xi)
\end{aligned}
$$

Now

$$
\begin{align*}
\sum_{\nu=1}^{\infty} \frac{x^{\nu}\left|s_{n}(\xi)-f^{\prime}(\xi)\right|}{\nu}= & \frac{1}{2 \pi} \int_{0}^{\pi}\left(\sum_{\nu=1}^{\infty} \frac{\sin \left(\nu+\frac{1}{2}\right) t}{\sin t / 2} \frac{x^{\nu}}{\nu}\right) d g(t) \\
= & \frac{1}{2 \pi} \int_{0}^{\pi} \frac{d g(t)}{\tan t / 2}\left(\sum_{\nu=1}^{\infty} \frac{\sin \nu t}{\nu} x^{\nu}\right) \\
& +\frac{1}{2 \pi} \int_{0}^{\pi} d g(t)\left(\sum_{\nu=1}^{\infty} \frac{\cos \nu t}{\nu} x^{\nu}\right) \\
= & I_{1}+I_{2} . \tag{3.2}
\end{align*}
$$

Also

$$
\begin{aligned}
\frac{1}{2 \pi} \int_{0}^{\pi} \cos \nu t d g(t) & =\frac{1}{\pi} \int_{0}^{\pi} \cos \nu t d \psi(t)+o(1) \\
& =\left[\frac{\cos \nu t}{\pi} \psi(t)\right]_{0}^{\pi}+\frac{\nu}{\pi} \int_{0}^{\pi} \sin \nu t \psi(t) d t+o(1) \\
& =\frac{\nu}{\pi} \int_{-\pi}^{\pi} f(u) \sin \nu(u-\xi) d u+o(1) \\
& =\nu\left(b_{\nu} \cos \nu \xi-a_{\nu} \sin \nu \xi\right)+o(1) \\
& =\nu B_{\nu}(\xi)+o(1)
\end{aligned}
$$

so that

$$
\left|I_{2}\right|=\left|\sum_{1}^{\infty} \frac{x^{\nu}}{\nu} \frac{1}{2 \pi} \int_{0}^{\pi} d g(t) \cos \nu t\right|
$$

$$
\begin{align*}
& =\left|\sum_{\nu=1}^{\infty} \frac{x^{\nu}}{\nu} \cdot \nu B_{\nu}(\xi)\right|+o\{\log (1-x)\} \\
& =\left|\sum_{\nu=1}^{\infty} x^{\nu} B_{\nu}(\xi)\right|+o\{\log (1-x)\} \\
& =o\{\log (1-x)\}, \quad \text { by }(2.7) . \tag{3.3}
\end{align*}
$$

Further

$$
\begin{aligned}
I_{1} & =\frac{1}{2 \pi}\left\{\int_{0}^{1-x}+\int_{1-x}^{\pi}\right\}\left(\tan ^{-1} \frac{x \sin t}{1-x \cos t}\right) \frac{d g(t)}{\tan t / 2} \\
& =\frac{1}{2 \pi}\left(I_{1,1}+I_{1,2}\right), \quad \text { say. }
\end{aligned}
$$

It is easy to see that

$$
\begin{equation*}
\left|\frac{1}{\tan t / 2} \tan ^{-1} \frac{x \sin t}{1-x \cos t}\right|=O\left(\frac{x}{1-x}\right), \quad \text { for } 0<t \leq 1-x \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\tan ^{-1} \frac{x \sin t}{1-x \cos t}\right|=O(1), \quad \text { for } 1-x<t \leq \pi \tag{3.5}
\end{equation*}
$$

Using (3.4) and (2.10), we have,

$$
\begin{align*}
\left|I_{1,1}\right| & =O\left(\frac{x}{1-x}\right) \int_{0}^{1-x}|d g(t)| \\
& =o\{\log (1-x)\} . \tag{3.6}
\end{align*}
$$

With the help of (3.5) and (2.8), we write,

$$
\begin{align*}
\left|I_{1,2}\right| & =O(1) \int_{1-x}^{\pi} \frac{|d g(t)|}{t} \\
& =0\{\log (1-x)\} . \tag{3.7}
\end{align*}
$$

Collecting (3.3), (3.6), and (3.7), the proof of theorem is complete.
I am much indebted to Dr. P. L. Sharma for his kind help and guidence in the preparation of this paper.

References

[1] D. Borwein: A logarithmic method of summability. Jour. Lond. Math. Soc., 33, 212-220 (1958).
[2] H. C. Chow: Criteria for the strong summability of the derived Fourier series and its conjugate series. Jour. Lond. Math. Soc., 31, 57-64 (1956).
[3] G. H. Hardy: Divergent Series. p. 81.
[4] K. Ishiguro: On the summability methods of logarithmic type. Proc. Japan Acad., 38, 703-705 (1962).
[5] B. N. Prasad and U. N. Singh: On the strong summability of the derived Fourier series and its conjugate series. Math. Zeit., 56, 280-288 (1952).

